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Kapitel 1

MVCNLS Fitsoftware

Die Multi Variate Complex Nonlinear Least Squares Software ermoglicht die Bestimmung von
Parametern von hoheren Modellen auf Basis der Ersatzschaltbildelemente durch die Analyse von
mehreren Impedanzspektren auf einmal. Weiterhin kann Expertenwissen tiber das betrachtete Werk-
stoffsystem eingebracht und natiirlich auch ein klassischer Einzelfit durchgefiihrt werden.

Der gemeinsame Nachteil der etablierten CNLS-Programme LEVM [30, 32], EquivCrt [21, 22] und
ZPlot/ZView [1] liegt in der Analyse nur eines Impedanzspektrums auf einmal. Oftmals werden
aber Messreihen mit Variation einer Umgebungsbedingung wie Temperatur, Gasatmosphire oder
Zeit mit Impedanzspektroskopie untersucht. Bei der Modellierung des Verhaltens in Abhdngigkeit
der variierten Umgebungsbedingung sind die Anderungen der Parameter des Ersatzschaltbilds von
zentraler Bedeutung. So kénnen z. B. durch die Variation der Temperatur die Aktivierungsenergien
der ionischen Leitfahigkeit oder durch Anderung des Sauerstoffpartialdrucks die Kinetik der Elek-
trodenreaktion bestimmt werden. Beim klassischen Verfahren wird dazu jedes Impedanzspektrum
einzeln gegen das gleiche Ersatzschaltbild gefittet und anschlieffend die Abhidngigkeit der Parame-
ter von der Umgebungsbedingung analysiert. Dieses Zweischrittverfahren ist stark fehlerbehaftet
da Rauschen in den Parameterverldufen die tatsdchliche Abhdngigkeit verschleiern kann. Ausser-
dem ergeben sich bei der Analyse des hoheren Modells oft sehr grofie Fehler, die das eigene Ver-
trauen in die Richtigkeit des gew&hlten Modells schmélern konnen. Diese Probleme resultieren aus
der Unkenntnis der hoheren Modelle, die bei klassischer CNLS-Software zwangsldufig gegeben ist.
Die stets — mehr oder weniger — verrauschten Impedanzspektren werden jeweils einzeln optimal
auf das verwendete Ersatzschaltbild gefittet, das hohere Modell kann dabei auf der Strecke bleiben.

Mit der MVCNLS Software werden mehrere Impedanzspektren, die dem gleichen Ersatzschaltbild
gehorchen, auf einmal gefittet, dabei ist die Abhédngigkeit jedes Ersatzschaltbildelements von der
variierten Grofie durch eine breite Auswahl an Funktionen beschreibbar. Die MVCNLS Software er-
mittelt aus allen angegebenen Impedanzspektren direkt die Parameter dieser Funktionen, also des
hoheren Modells. Durch diese Methode wird das fehlerbehaftete Zweischrittverfahren umgangen
und es sind wesentlich genauere und sicherere Ergebnisse erreichbar. Ein weiterer Vorteil liegt in
der Bestimmung von Prozessen, die sich bei einer Inpedanzmessung nur teilweise im betrachteten
Frequenzbereich befinden. Verdandert sich das Impedanzspektrum mit der Umgebungsbedingung,
was meist der Fall ist, so verschieben sich die Eckfrequenzen der Prozesse. Damit ist mit mehreren
Impedanzspektren, die einen Prozess auch nur teilweise enthalten, eine akzeptable Genauigkeit er-
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reichbar. Im Zweischrittverfahren ist dieses Problem nahezu unlésbar oder mit sehr grofien Fehlern
behaftet.

Seit Beginn der 90er Jahre sind in der Literatur vereinzelt Ansédtze oder Programme zu diesem The-
ma zu finden. So beschreibt Zoltowski [38, 39] den dhnlichen Ansatz MNLS sowie die Notwen-
digkeit der physikalischen Modellierung von Ersatzschaltbildelementen. Vor kurzem wurde von
Dygas [25] die MULTIFIS Software beschrieben, auch sie verwendet einen dhnlichen Ansatz wie
MVCNLS. Allerdings sind tiber beide Implementierungen keine weiteren Informationen bekannt
und sie sind nicht allgemein verfiigbar. Die MVCNLS Software kann kostenlos vom Autor bezogen
werden, Weiterentwicklungen werden auf [3] veroffentlicht.

Im folgenden werden die MVCNLS zugrundeliegenden Modelle und Mechanismen erldutert. Dabei
wird vorwiegend das Verfahren behandelt. Eine Kurzbeschreibung fiir Anwender ist in Abschnitt
?? oder [3] zu finden.

1.1 Ersatzschaltbild

Bei der Auswahl moglicher Ersatzschaltbilder stand universelle Einsatzbarkeit und einfache Im-
plementierung im Vordergrund. Viele Werkstoffsysteme sind durch die Serienschaltung von RC-
Elementen beschreibbar. Aufgrund einer Verteilung der Eigenschaften einer Probe, Diffusionsbe-
grenzungen oder inhomogener Elektroden [24, 29, 31] [alle Moglichkeiten auf einmal zitieren, in
Macdonald Buch nochmal nachschauen, da miisste aber auch was drin sein] kann allerdings die
Beschreibung durch RQ-Elemente notwendig sein. Ein RQ-Element ist die Parallelschaltung aus
einem Widerstand und einem CPE. Das RQ-Element ist in Abschnitt 3 ndher beschrieben. Weiter-
hin ist jedes Ersatzschaltbild in eine Serienschaltung aus RQ-Elementen transformierbar. Aus die-
sen Griinden ist in der MVCNLS Software ein Ersatzschaltbild aus beliebig vielen RQ-Elementen
in Serie implementiert.

Betrachtet man ein Material mit temperaturabhingiger Leitfahigkeit bei mehreren Temperaturen
und trdgt die Werte des Q-Elements iiber der Temperatur auf, so beobachtet man einen exponenti-
ellen Anstieg iiber der Temperatur, der nicht durch einen entsprechenden Verlauf der Permittivitat
begriindet werden kann. Wie in Abschnitt 2 ndher erldutert wird, kann man, ausgehend von der
Darstellung eines RQ-Elements als unendliche Summe von RC-Elementen, ein dquivalentes RC—
Element zu einem RQ-Element berechnen, dass das grofste Gewicht in der unendlichen Summe
besitzt. Dabei bleibt der Widerstand unverdndert, es wird lediglich die dquivalente Kapazitdt nach
C = (R . Q)" verwendet.

In der MVCNLS Software wird daher intern mit Widerstand R, dquivalenter Kapazitat C' und Index
n des RQ-Elements gerechnet. Auch alle Temperaturmodelle werden fiir diese drei Grofien ange-
geben. Zur Berechnung der Impedanz wird aus diesen Daten wieder ein RQ-Element berechnet, es
handelt sich also nur um eine interne Darstellung, die die Modellierung erleichtert.

Die MVCNLS Software ermoglicht fiir jedes Ersatzschaltbildelement R, C' und n getrennt die An-
gabe seiner Temperaturabhingigkeit. Dabei kann zwischen drei Varianten gewahlt werden:

normal temperaturabhédngig nach der allgemeinen Temperaturgleichung (1.5)
floating bei jeder Temperatur einen unterschiedlichen, voneinander unabhiangigen Wert

fixed bei jeder Temperatur einen ggf. unterschiedlichen aber festen Wert
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Dabei stellt die Verwendung der Variante ,floating” fiir alle Elemente den konventionellen CNLS-
Fit dar, ,fixed” dient vorwiegend zur Vereinfachung des Ersatzschaltbilds, wie Angabe eines reinen
Widerstands oder RC— und RL-Elemente.

Ein Constant Phase Element kann eine Spule (n = —1), einen Widerstand (n = 0), einen Kondensa-
tor (n = 1) und alle Zwischenzustdnde annehmen (Abschnitt 3). Daher kann mit dem allgemeinen
Ersatzschaltbild aus RQ-Elementen auch ein tatsiachliches Ersatzschaltbild aus reinem Widerstand,
RL- und RC-Elementen abgebildet werden.

1.2 Temperaturmodelle

Der Ansatz der MVCNLS Software erfordert die Beschreibung der Temperaturabhidngigkeit aller
Ersatzschaltbildelemente R, C' und n. Da diese Elemente, je nach zugrunde liegendem physikali-
schen Mechanismus, sehr unterschiedliche Temperaturverldufe besitzen kénnen, miissen entspre-
chend viele Funktionen angeboten werden. Um trotzdem eine tibersichtliche Darstellung und fle-
xible Erweiterungsmoglichkeiten zu gewdéhrleisten, wird fiir alle Elemente eine einzige Funktion
verwendet, die allgemeine Temperaturgleichung z(T"). Sie enthdlt in einer Summe alle moglichen
Effekte und ist beliebig erweiterbar. Nicht benotigte Parameter werden zu Null gesetzt und nicht
optimiert. Somit kann fiir jedes Element des Ersatzschaltbilds die komplette vorhandene Auswahl
an Modellfunktionen verwendet werden, trotzdem bleibt die Darstellung tibersichtlich.

Die einzelnen Parameter der allgemeinen Temperaturgleichung sind mit Grofibuchstaben (4, E,
M, B, ...) bezeichnet. Die Zuordnung zu den Modellfunktionen ist fest und wird im folgenden
beschrieben.

In einem Material mit thermisch aktivierter (Ionen-) Leitfdhigkeit kann die Leitfdhigkeit ¢ nach
folgender Gleichung angegeben werden:

A -E,
o(T) = T eXP

(1.1)

Dabei ist Ay ein konstanter Vorfaktor und E, die Aktivierungsenergie der Leitfihigkeit. Berechnet
man aus der Leitfahigkeit einen Widerstand, so folgt mit

1 1
R=-

o A,
das Temperaturmodell fiir einen thermisch aktivierten Widerstand:

/ E
x(T):A-T~expﬁ (1.2)

Fir die Temperaturabhédngigkeit der Permittivitiat bzw. der Kapazitit kann in einem begrenzten
Temperaturbereich lineares oder 1/7—-Verhalten angesetzt werden. Weiterhin hat der CPE-Index n
eine lineare oder gar keine Temperaturabhéingigkeit [verkniipfen zu Temperaturabhingigkeit der
Permittivitit und n]. Es ist daher ein lineares Verhalten

1

J(T)=M-T+B (1.3)

sowie ein allgemeines Potenzgesetz

"

z (T)=D-TN (1.4)
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verfiigbar, das auch fiir Diffusionsprozesse sowie Alterungsmechanismen verwendet werden kann.

Aus diesen Teilfunktionen ergibt sich die allgemeine Temperaturgleichung z(7'):

E
x(T)zA.T-expk—T+M.T+B+D-TN (1.5)

Es konnen jederzeit weitere Teilfunktionen hinzugefiigt werden, wenn diese allgemeinen Zusam-
menhédnge nicht fiir die Modellierung ausreichend sein sollten. Sollen mehrere Teilprozesse mit
dem gleichen Temperaturverhalten, z. B. zwei sich tiberlagernde thermisch aktivierte Leitfahigkei-
ten, modelliert werden, so kann (1.5) beliebig oft wiederholt werden.

1.3 Optimierungsproblem

Die MVCNLS Software 16st das eigentliche Optimierungsproblem dhnlich den klassischen CNLS-
Ansitzen (siehe Abschnitt 5.2). Ein zentraler Unterschied ist die Betrachtung von mehreren Impe-
danzspektren auf einmal. Behandelt man diese jedoch wie eine Messung mit entsprechend vielen
Frequenzen, so kann der klassische CNLS-Ansatz (5.12) verwendet werden. Ein weiterer Unter-
schied der MVCNLS Software gegeniiber klassischen Ansitzen ist die Unterstiitzung von Grenzen
auf alle Parameter der allgemeinen Temperaturgleichung sowie auf jeden Ersatzschaltbildparame-
ter R, C'und n. Es kann sogar die Eckfrequenz eines RQ-Elements beschrankt werden. Durch diese
Grenzen oder Beschrankungen konnen unsinnige Werte (z.B. n > 1, R < 0, etc.) verhindert aber
auch Expertenwissen eingebracht werden. Der in vielen klassischen CNLS-Programmen verwen-
dete Levenberg-Marquardt-Algorithmus [28, 33, 34] unterstiitzt allerdings keine Beschrankungen.
Daher musste ein anderer Algorithmus gefunden werden, der fiir CNLS-Probleme geeignet ist und
lineare (Parameter der allg. Temperaturgleichung) sowie nichtlineare (Ersatzschaltbildparameter)
Grenzen unterstiitzt. Die Wahl viel auf den modernen Standardalgorithmus fiir diese Art der Pro-
blemstellung, den Algorithmus der Sequentiellen Quadratischen Programmierung (SQP). Eine Be-
schreibung des SQP Algorithmus findet sich u.a. in [26, 27, 37]. Stehle S. 188 und davor, e04unc
soll wie NPSOL implementiert sein

Da die Hauptaufgabe in der Losung des MVCNLS Ansatzes und nicht in der Programmierung einer
weiteren SQP Implementierung lag, wurde die Funktion e04unc [5] der kommerziellen Bibliothek
NAG Mark 7 der Numerical Algorithms Group [4] ausgewdhlt. Sie bietet alle geforderten Figen-
schaften und stellt eine komfortable Schnittstelle zu getesteten und bewéhrten Algorithmen zur
Verfiigung.

Die e04unc Funktion optimiert ein NLS-Problem der Art

m

o 1 -
F(Z) = 5 Z lyi — f:(@)) (1.6)
i=1
Dabeiisti = 1...mund & = (z1,z2,... ,:cn)T, d.h. m Stiitzstellen und n Variablen werden be-

trachtet. Der Stiitzstellenvektor ¢ wird zu Null gesetzt, die Funktionen f;(Z) stellen dann die Mo-
dellfunktionen oder Residuen dar, die die Abweichung zwischen Messdaten und Modell sowie die
Gewichtung enthalten (siehe Abschnitt 5.2). Es wird somit das Problem

F@) =3 7@ (17)
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mit den Residuen R
Z(T,f) — Z(%)

fi(@) Z(T.)] (1.8)
und den Beschrankungen
z
< AL -7 $y<a (1.9)
(&)

betrachtet. Dabei ist Z die gemessene Impedanz bei der Temperatur 7" und Frequenz f sowie Z die

aus den Variablen & berechnete Impedanz an der gleichen Stelle. Die Beschrankungen sind entwe-

der direkt fiir die Variablen, fiir Linearkombinationen der Variablen mit der Matrix Ay, : n;, X n

sowie fiir nichtlineare Funktion der Variablen mit ¢(Z) : ny x 1 anzugeben. Die Modellimpedanz

wird aus der Serienschaltung beliebig vieler RQ Elemente berechnet:
. Ry,

7= %c; 1+ (jw)™ Ry Qg

(1.10)

Dabei konnen Ry, @y iiber C} und nj nach der allgemeinen Temperaturgleichung (1.5) von der
Temperatur abhdngen, fixiert oder fiir jede Temperatur frei sein.

Da der Gradientenvektor bzw. die Jacobi—-Matrix aggff)

— nur schwierig analytisch berechenbar ist,

wird von der Moglichkeit der e04unc Funktion des Schidtzens der Ableitungen nach der finiten
Differenzen Methode Gebrauch gemacht.

1.4 Bestimmung der Startwerte

Wie bei einem konventionellen CNLS-Fit miissen Startwerte fiir die RQ-Elemente angegeben wer-
den. Im Fall der MVCNLS Software konnen fiir jede Temperatur fiir alle verwendeten RQ-Elemente
Startwerte angegeben werden. Da intern mit dquivalenten Kapazititen gearbeitet wird, die nach
(2.13) aus einem RQ-Element berechnet werden, miissen stets alle oder keine Daten eines RQ-
Elements angegeben werden, da sonst keine Umrechnung moglich ist.

Fiir Ersatzschaltbildelemente, die durch ein Temperaturmodell beschrieben sind, werden die Start-
werte des Temperaturmodell aus den Startwerten des Ersatzschaltbildelements durch eine separate
Optimierung bestimmt. Dazu wird fiir jedes R, C' und n aller RQ-Elemente ein NLS-Fit mit allen
verfligbaren Startwerten durchgefiihrt. Dabei werden bereits alle angegebenen Grenzen fiir dieses
Ersatzschaltbildelement berticksichtigt. Je nach Qualitdt der Startwerte reichen Angaben bei zwei
Temperaturen fiir eine Losung aus, durch die Angabe aller Startwerte des Ersatzschaltbildelements
werden allerdings zuverlédssigere Startwerte fiir das Temperaturmodell gewonnen.

1.5 Skalierung

Ein Problem sollte skaliert optimiert werden (Abschnitt 5). Durch eine Skalierung wird erreicht, dass
alle Variablen die gleiche Grofienordnung haben, tiblicherweise |z;| ~ 1. Die MVCNLS Software
verwendet einen positiven Skalierungsfaktor s;, der den tatsdchlichen Parameter P; auf die Variable
xj des Optimierungsproblems umrechnet.

T;=rLj-5; 5; >0 (1.11)
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Wihrend der Optimierung ruft der Algorithmus eine benutzerdefinierte Funktion zur Berechnung
der Residuen f;(#) auf. Dort miissen vor Berechnung der Residuen die tatsdchlichen Parameter P;
mit der Skalierung aus den aktuellen Variablen z; berechnet werden. Weiterhin miissen numerisch
berechnete Ableitungen nach den Variablen z; mit den Skalierungsfaktoren in Ableitungen nach
den Parametern P; zuriickgerechnet werden:

OF(P) OF(P) Or OF(P) Or OF(P)

or _ oP or oz opP oz ° (1.12)

Die Ableitung der Zielfunktion F'(Z) nach den Parametern P; kann mit der Kettenregel aus den
Ableitungen der Residuen berechnet werden:

F@ = L[R@+B@+. .+ @)
OF(P) _ LT0RE)  0BE@ | LW
oxr; 2[ 0z * 021’] L ox;
- ;[fm D o@D g

Schreibt man diese Summe wieder kompakt und beriicksichtigt die Skalierung, so erhdlt man einen
Ausdruck fiir die Ableitung der Zielfunktion (1.7) nach den Parametern, berechnet anhand der Re-
siduen und den Ableitungen der Residuen:

aF “ 6fz
Z axj (1.13)

1.6 Statistik

Nachdem eine Losung des Optimierungsproblems gefunden ist, sind die Gtite des Fits sowie detail-
lierte Aussagen zu den Fehlern der einzelnen Parameter von grofSem Interesse. In diesem Abschnitt
sind die fiir das MVCNLS Verfahren wichtigen Zusammenhénge aus Abschnitt 4 und Abschnitt 5
zusammengefasst sowie iiber die Grundlagen hinausgehende Betrachtungen erldutert.

Die e04unc Fitfunktion stellt neben der Losung z* den Wert der Zielfunktion F(z*) und die par-
tiellen Ableitungen der Residuen an allen Stiitzstellen nach allen Variablen, die Jacobi-Matrix, zur
Verfiigung. Mit der Konstante g nach (5.14) und der Jacobi-Matrix J wird die Kovarianzmatrix C
berechnet:

Crg-(37-3)7 = (%) (1.14)

Dabei muss die zuriickskalierte Jacobi—-Matrix nach Abschnitt 1.5 verwendet werden. Die Konstante
g stellt eine Schiatzung der Varianz des Fits dar. Die Diagonalelemente der Kovarianzmatrix C sind
die Varianzen 0]2 der Parameter.

Neben den Varianzen der Parameter sind auch die Fehler in den Ersatzschaltbildelementen R, ()
bzw. C und n von Interesse. Dazu wendet man auf die allgemeine Temperaturgleichung (1.5) die
Fehlerfortpflanzung an:

N 2.AA2+ L 2-AE2+ Y 2 apz g (25) AN (1.15)
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Mit den partiellen Ableitungen der allgemeinen Temperaturgleichung nach den Parametern

oz E oz A B ox
DA =T- exXp ¥T OEFE = T exp 5T M =1
o) 1 ox TN oz TN T

1463t sich die Varianz in den jeweiligen Ersatzschaltbildelementen berechnen. Dabei muss man be-
achten, dass die Parameter A bis N zwar temperaturunabhingig sind, durch die Ableitungen aber
eine Temperaturabhidngigkeit der Varianzen entsteht.

Da die allgemeine Temperaturgleichung fiir die dquivalente Kapazitat C' und nicht fiir @ gilt, muss
der Fehler in C nach (1.15) noch in einen Fehler fiir Q umgerechnet werden. Dies wird wieder mit
der Fehlerfortpflanzung durchgefiihrt:

Q:Cn'Rn_l
8£_ _ . pn—2 _ m aﬁ_ . pn—1_ m—1 8762_ n—1_m
aR—(n 1) R C 50 =" R C o =R C"(InR+1InC)
— 9Q ’ 2 9Q ’ 2 9Q ’ 2
AQ_\/<6R> "AR? + (ao ACTH(SE) - An (1.17)

Das Vertrauensband gibt den Bereich um den geschétzten Parameter P} an, in dem mit der Wahr-
scheinlichkeit p der wahre Wert liegt. Es ist um so grofer, je hoher die Wahrscheinlichkeit ist und
wird iiber die geschitzte Standardabweichung o; des Parameters berechnet. Die MVCNLS Software
gibt zwei tibliche Vertrauensbdnder nach [35] an:

p=95%:P +£1960-0; p=99%: P +2576-0; (1.18)

1.7 Informationsbeitrag einer Messung zu einem RQ-Element

Die MVCNLS Software ermoglicht die Bestimmung von RQ-Elementen, auch wenn diese bei ei-
nigen (nicht allen!) Temperaturen tiberhaupt nicht oder nur teilweise durch den gemessenen Fre-
quenzbereich abgedeckt sind. Als Folge eines solchen Fits erhélt man Parameter der RQ-Elemente,
weiss aber zuerst nicht, bei welchen Temperaturen dieses Element bestimmbar war und bei wel-
chen nicht oder nur teilweise. Diese Information kann nach dem Fit aus den Parametern jedes RQ-
Elements und dem gemessenen Frequenzbereich berechnet werden.

Jedem RQ-Element ist eine Verteilungsfunktion G(z) zugeordnet, die einer Gauss—Glocke dhnelt.
Je kleiner n ist, umso breiter ist die Verteilungsfunktion. Sie erstreckt sich von —oo bis +00, hat stets
die Fliche Az = R und ist nach [36] durch

_ R sin[(1 —n) - 7]
27 coshin(x — xg)] — cos[(1 —n) - 7]

G(z) (1.19)

gegeben. Dabei ist © = In(w/wp) die logarithmische Frequenzvariable, w, eine beliebige aber feste
Bezugskreisfrequenz und z¢ = In(wy/wo) die logarithmische Eckfrequenz des RQ-Elements.

Die Verteilungsfunktion ist fiir o = 0 in Bild 1.1 fir n = 0,9, n = 0,8 und n = 0,5 dargestellt.
Bei n = 1, also einem RC-Element, folgt ein Dirac-Impuls bei . Um ein RQ-Element aus einem
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1.0
0.8
0.6 4
x
o
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0.24
0.0 : . ,
-10 0 10
X
Bild 1.1: Verteilungsfunktion eines RQ—Elements
Impedanzspektrum zu bestimmen, ist idealerweise die Messung von z1 = —oo bis 2 = 400 also

von f; = 0Hz bis fo = oo Hz notwendig. Da die Verteilungsfunktion schnell abklingt, kann man
z.B. einen Wert x99y, definieren, mit dem zwischen —zgg9y, und +xg99 99% der Gesamtfldche liegt.
In der Praxis wird aber nur ein praktikabler Frequenzbereich gemessen, es kann daher sein, dass die
zwischen den Grenzen des Messbereichs gelegene Flache A,,.ss der Verteilungsfunktion deutlich
unter 99% liegt (Bild 1.2). Die Fldche A,,¢ss kann als Maf fiir den Informationsbeitrag einer Messung

1.0
0.8 1

0.6 1

G(x)

0.4

0.2

0.0

Bild 1.2: Fliiche der Verteilungsfunktion eines RQ—Elements im Bereich von x1 bis 2

zur Bestimmung des RQ-Elements aufgefasst werden. Je ndher A,,.ss der Gesamtflache A kommt,
umso mehr Information tragt diese Messung zur Bestimmung des RQ-Elements bei.
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Um diese Flache analytisch fiir ein gegebenes RQ-Element und einen Frequenzbereich berechnen
zu konnen, muss die Verteilungsfunktion im Bereich von x; bis x5 integriert werden. Dazu geht
man von (1.19) aus und ersetzt zunéchst die konstanten Teile durch Platzhalter:

A= 25 -sin[(1 —n) - 7] B = cos[(1 —n) - 7] (1.20)
T
Die zu berechnende Fldche A5 ist das Integral {iber G(x) von z; bis z:
T2 x2
A —/G()d—/ A d (121)
mess )= cosh[n(z — x0)] — B v '
r=x1 =1
Nun substituiert man das Argument des cosh durch s:
1
s =n(x — xo) dx = . ds s(z1) = s1 = n(x1 — xo) s(we) = s9 = n(xe —xo)  (1.22)
Es folgt:
ED) 52
A 1 A/n
Amess = 1/ N o = N 5 1.2
/ cosh(s) — B n ds / cosh(s) — B ds (1.23)
S$=81 s=81

Dieses Integral 16st man, indem erneut substituiert wird:

t2+1 1
e’ =t cosh(s) = 2—; ds = n dt t(s1) =t1 =€ t(s2) = tg = €2 (1.24)
Der Integrand ist nun durch eine rationale Funktion dargestellt:
Foam 1 P A2 24 f d
n n- t
Amess: 1 - = -5 . . 5 = — - 1.2
/t?gl_B t di /t2+1—2t-B di n /t2—2B-t—|—1 (1.25)
t=t1 t=t1 t=t1
Das Integral [ ‘% mit X =a-224+b-z+ cund A = 4ac — b? ist in [23] tabelliert:
dx 2 2ax +b
— = —— -arctan | ———— fir A>0 1.26
X~ Va (%) (120)
Mit den Identititen
r=t a=1 b=-2B c=1 A=4(1-DB? (1.27)
und der Nebenbedingung
A>0 fir n<l1 (1.28)

kann das Integral angegeben werden:

t2

/ dt [ 1 arcta <t -5 >]t2 (1.29)
= - ar 1n .
t2—-2B-t+1 V1 - B? V1-B%/ ]

t=t1

Die Flache A,,¢ss unter der Verteilungsfunktion (1.19) zwischen ¢; = e"(@1-20) ynd ¢, = en(¥2—20)

lautet:
24 ty — B t{ — B

Aess = ——— |arctan | — | — arctan | ——
nv1 — B2 [ <\/1—BQ> <\/1—B2>}
fi

Zu beachten sind die Nebenbedingung 0 < n < 1 und der Zusammenhang ¢; = (Tg)n und ty =

()"

Bezieht man A,,.ss auf die maximal mogliche Flache Ag, so erhdlt man einen Flachenfaktor arg,

(1.30)

der zwischen 0 und 1 liegt. Fiir arg = 0 trdgt die betrachtete Messung nicht zur Bestimmung des
RQ-Elements bei, fiir arg — 1 ist das RQ-Element bestmoglich durch die Messung bestimmt.
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1.8 Beispielanalyse

Das Vorgehen bei der Impedanzanalyse mit MVCNLS wird anhand einer Probe aus dichtem 3Y-
TZP demonstriert. Alle Schritte werden detailliert dargelegt sowie die Ergebnisse und Ausgaben
der MVCNLS Software diskutiert.

Die Probe besteht aus mit 3 mol% Y,0O3 stabilisiertem ZrO, (TZ-3Y, Tosoh) und ist bei 1500 °C fiir
3 h gesintert. Die Probe ist dicht (> 99,5 %), besitzt eine mittlere Korngrofie von 340 nm und ist rein
tetragonal. Die Abmessungen betragen 12 x 8 x 10 mm?, die Kontaktierung erfolgte mit gesputterten
Platinelektroden mit einer Fliche von 10 x 8 mm?, der Elektrodenabstand betrdgt 10 mm. Die Im-

Re(Z) / Ohm
0,0 500,0k 1,0M 1,5M 2,0M
0 1 1 1 1
£
ey
[e]
J 250k
E 250°C
Re(Z) / Ohm
0 20k 40k 60k 80k 100k
0 ! ! ! ! )
€
<
(o]
~ -10k 4 o
g8 350°C
E
-20k
Re(Z) / Ohm
0 2k 4k 6k 8k 10k
0 1 1 1 1 1
£
5 o]
5 ol \/k/ 450°C
8
E
-2k 4

Bild 1.3: Impedanzspektren der 3Y-TZP Probe bei 250, 350 und 450 °C

pedanzspektroskopie wurde im Frequenzbereich von 0,1 Hz bis 1 MHz bei 10 Schritten pro Dekade
und 0,1 mV Amplitude ohne Bias durchgefiihrt. Die Temperatur wurde in 25 K Schritten von 250 °C
bis 450 °C variiert. Eine Auswahl der Impedanzspektren in Ortskurvendarstellung ist in Bild 1.3
dargestellt. Man kann die Verschiebung der Ortskurve durch die thermisch aktivierte Leitfahigkeit
des ZrO, erkennen. Bei keiner der 9 betrachteten Temperaturen sind alle drei Beitrage von Korner,
Korngrenzen und Elektroden gleichzeitig im Frequenzbereich zu beobachten.

Fiir die Analyse mit MVCNLS wird ein Ersatzschaltbild aus drei RQ-Elementen in Serie (Korner,
Korngrenzen, Elektroden) verwendet. Fiir die Leitfahigkeit bzw. den Widerstand aller drei Elemen-
te wird thermisch aktiviertes Verhalten angesetzt. Der Index n aller CPE-Elemente wird tempera-
turunabhéngig angesetzt. Die dquivalente Kapazitdt wird durch lineares Temperaturverhalten mit
positivem Offset modelliert. Es muss angemerkt werden, dass fiir die Elektroden die Temperaturab-
héangigkeiten angenommen wurden. Die Beitrdge der Elektroden werden nicht weiter verwendet,
es hat sich aber gezeigt, dass eine temperaturabhdngige Beschreibung des Elektrodenbeitrags zu
stabileren Fitergebnissen fiihrt. Dies kann dadurch begriindet werden, dass der Beitrag der Elek-
troden bei keiner der gemessenen Temperaturen vollstandig, sogar meist {iberhaupt nicht oder nur
ansatzweise beobachtet werden kann.

Das Ersatzschaltbild und die Temperaturabhéngigkeiten seiner Parameter wurde wie folgt defi-

niert:
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R1=f(A1,E1) Al<=le-3 E1>=0.8 El<=1.2
C1=f(M1,B1) M1l=-le-14 Bill=1le-10
nl=f(Bl)  B1>=05

R2=f(A1,E1l) Al<=le-3 E1>=0.8 El<=1.2
C2=f(M1,B1) M1l=-1e-13 Bll=le-9 M1<=-0.8e-13 M1>=-80e-13
n2=f(B1)  B1>=0.5

R3=f(A1,E1) Al<=le-5 E1>=0.7 E1<=1.8

C3=f(M1,B1) M1ll=+le-7 Bl!=1e-8

n3=f(B1) B1>=0.5 B1!=0.7

Die Groflen A, E, M und B sind die Parameter der allgemeinen Temperaturgleichung (1.5), wei-
tere Informationen finden sich in der Kurzbeschreibung der MVCNLS Software in Anhang ??. Die
Grenzen sowie die Startwerte sind Erfahrungswerte. Analysiert man Wiederholungsmessungen der
gleichen Probe, die in der Ortskurve bis auf Rauschen identisch sind, mit den gleichen Startwerten,
so bekommt man ein gutes Gefiihl fiir schlecht zu bestimmende Parameter. Im vorliegenden Fall
trat dies beim Parameter M1 von C2 auf. Durch die gewidhlten Grenzen konnte der Parameter sta-
bilisiert werden. Der Beitrag der Kérner und Korngrenzen wird durch RQ1 und RQ2 beschrieben,
die Elektroden werden durch RQ3 dargestellt.

Startwerte fiir die RQ-Elemente wurden in einer Voridentifikation mit EquivCrt bei ausgewéhlten
Temperaturen bestimmt. Dazu wurde die Moglichkeit von EquivCrt genutzt, direkt in der Ortskur-
ve die Parameter eines RQ-Elements durch drei Punkte ndherungsweise zu bestimmen. Fiir Kérner
und Korngrenzen (RQ1 und RQ2) sind fiir 250 °C, 275 °C und 300 °C und fiir die Elektroden (RQ3)
fir 350 °C, 375 °C und 300 °C Startwerte angegeben.

Die Losung wird nach 16 Iterationen bei einem Wert der Zielfunktion von 0,34 gefunden. Die Feh-
ler der einzelnen Parameter fiir Aktivierungsenergien und CPE-Indicees n sind kleiner als 1 %. Fiir
die Fehler der Parameter der dquivalenten Kapazitidten werden Fehler bis zu 200 % berechnet. Dies
zeigt die Schwierigkeiten fiir die nur sehr schwach temperaturabhidngige Kapazitat eindeutige Ab-
hédngigkeiten zu bestimmen. Alle Parameter und Fehler sind in Tabelle 1.1 zusammengestellt. Die

Tabelle 1.1: Ergebnisse des MV CNLS Fits einer dichten 3Y-TZP Probe.

Abhangig- Korner (RQ1) Korngrenzen (RQ2) Elektroden (RQ3)
keit R C n R C n R C n
Al / Ohm 1,90e-6 2,68e-8 3,88e-10
oar 0,8% 2,6% 125%
El/eV 0921 1,121 1,444
opr 0,1% 0,1% 5,2%
M1 / (F/K) -1,17e-14 -1,40e-13 8,68e-8
oM1 2,9% 169% 227%
Bl1/F 1,13e-11 8,84e-10 8,44e-5
oB1 1,6% 15% 166%
B1 0,85 0,93 0,74

OB1 0,40/0 1,30/0 2,60/0
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Leistungsfahigkeit des MVCNLS Verfahrens gegeniiber einer Einzelanalyse jedes Spektrums zeigt
sich in Bild 1.4. Obwohl die Elektrode bei 250 °C gar nicht und bei 350 °C nur teilweise im Frequenz-
bereich zu beobachten ist, konnte sie bei jeder Temperatur gut bestimmt werden. Ebenso kann der
Beitrag der Kérner ab 350 °C nur mit grofien Fehlern in einer Einzelanalyse bestimmt werden. Durch
das MVCNLS Verfahren ist dies auch bei hoheren Temperaturen moglich. Die Prozentangaben nahe

Re(Z) / Ohm
0 M 2M 3M 4M
o . . . .
E 98% 100% 2,
° . 250°C
500k - "
E N 0%
\\
-1M 4
Re(Z) / Ohm
0 20k 40k 60k 80k 100k 120k 140k 160k 180k 200k
£ 'L 14% /!
[ T2 100% ’
< 20k N 1%
E a0kd 0 TTmeeees 350°C
Re(Z) / Ohm
0 2k 4k 6k 8k 10k
o 1 1 1 1 1
E I 83% 2
. (0] .,
2 adh 1% - 96u ’
—~ KA Se e 0)
g eeee.- - 450°C

Bild 1.4: gemessene und aus dem Fitergebnis berechnete Impedanzspektren der 3Y-TZP Probe bei 250, 350
und 450 °C

jedem Halbkreis in Bild 1.4 geben den Informationsbeitrag (siehe Abschnitt 1.7) dieser Messung zur
Bestimmung des entsprechenden Elements des Ersatzschaltbilds an. So tragt z. B. die Messung bei
350 °C nur zu 14 % des maximal moglichen Beitrags zur Bestimmung des Korneranteils bei.



Kapitel 2

Darstellung eines RQ-Elements durch
endlich viele RC-Elemente

Oftmals sind Halbkreise im Impedanzspektrum gestaucht, d. h. es muss mit RQ- statt RC- Ele-
menten gefittet werden [7]. Als mogliche Ursachen werden in der Literatur [24, 29, 31] Verteilung
der Eigenschaften einer Probe, Diffusionsbegrenzungen oder inhomogene Elektroden genannt. Be-
schrankt man sich auf polykristalline Keramiken ohne Elektrodeneffekte, so kommt nur die In-
homogenitit der elektrischen Eigenschaften als Ursache fiir RQ—-Verhalten in Betracht. Die Inho-
mogenitdt kann durch eine Verteilung der Korngroéfien, unterschiedliche Porengrofien oder auch
ungleichmaéfiige Verteilung des Stabilisatorgehalts verursacht sein.

Der Parameter Q eines RQ-Elements stellt schon formal keine Kapazitdt dar (Abschnitt 3.4) und
kann daher nicht direkt mit dielektrischen Eigenschaften korreliert werden. Wie im folgenden dar-
gestellt wird, muss fiir eine Modellierung der Kapazitit (z.B. als Funktion der Temperatur, einer
Schichtdicke, etc.) diese zuerst aus dem RQ-Element berechnet werden.

2.1 Integrale Darstellung eines RQ-Elements

Ein RQ-Element (Abschnitt 3.4) kann durch die Serienschaltung von unendlich vielen RC-Elementen
dargestellt werden. In der Literatur (z. B. [6, 9-11]) herrscht Einigkeit tiber die integrale Darstellung
eines RQ-Elements:

[ R
ZrQ = /l—i—ijC(s)'F(s)'ds (2.1)

Dabei ist s = In - mit 79 = (RQ)'/™ und C(s) = (R*" - Q)" . ¢s.

Die Gewichtungsfunktion F'(s) ist in der Literatur allerdings unterschiedlich definiert. Geht man
von [6] aus und verwendet den Zusammenhang o = 1 — n so ergibt sich die Gewichtungsfunktion

- F(s) = 1 sin[(1 —n) - 7]
2w cosh[n-s| —cos[(1 —n) -]

(2.2)

Dagegen findet man bei [11] eine zweite

1 sin (1 —n)
21 cosh(n-s)—cos(l—n)

F'(s)
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und bei [8, 9] eine dritte Interpretation von [6]:

. _i sin[(l—”)'g]
F (S)_27T cosh[n - s] —cos[(1—n)-

]

Bei diesen verschiedenen Definitionen der Gewichtungsfunktion muss man beachten, dass sie alle

Sl

auf der gleichen Veroffentlichung von Cole aufbauen. Die Gleichung (2.2) wird in [6] aus einer
Arbeit von Fuoss und Kirkwood [12] abgeleitet. Dort findet sich auch der Zusammenhang zwischen
Gewichtungsfunktion F'(s) und der Verteilungsfunktion der Relaxationszeiten G(7):

F(s)=7-G(1) (2.3)

In [31] wird diese Verteilungsfunktion zu

1 sin[o]

G(7) (2.4)

T 2rr cosh[(1 — a) - s — cos|am]

angegeben. Zusammen mit Gleichung (2.3) und a = 1 — n folgt daraus die Darstellung nach Glei-
chung (2.2).

Ein weiteres Indiz fiir die Richtigkeit von (2.2) ist die Normierung der Gewichtungsfunktion F'(s).
Nach [6, 12, 31] muss die Gewichtungsfunktion auf 1 normiert sein:

/ F(s)-ds=1 (2.5)

Gleichung (2.2) erfiillt diese Bedingung, die beiden anderen Darstellungen nach [11] und [8, 9] lie-
fern einen Wert grofler 1.

Daher wird in dieser Arbeit mit der Gewichtungsfunktion F'(s) nach (2.2) gearbeitet.
Die Gewichtungsfunktion F'(s) nach (2.2) ist fiir n = 0,9 und n = 0,7 in Bild 2.1 dargestellt.

12

§ \s
[
[\

0,0 \ ‘ ‘

F(s)

Bild 2.1: Gewichtungsfunktion F'(s) fiirn = 0,9 und n = 0,7
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2.2 Summendarstellung eines RQ-Elements

Ein RQ-Element kann durch die Serienschaltung von unendlich vielen RC-Elementen dargestellt
werden. Von praktischen Nutzen ist allerdings die Approximation mit endlich vielen RC-Elementen.
Die Fragestellung ist nun, wie die Daten der RC-Elemente bei bekannter Anzahl aus den Daten des
RQ-Elements berechnet werden konnen.
Dazu schreibt man (2.1) als unendliche Summe:
i R F(iAi) - Ai
1+ jwRC(iA7)

Zpo = lim (2.6)

N—oo |
i=—N

Dabei wird die Integrationsvariable s durch s = iAi bzw. ds durch ds = A ersetzt. Schreibt man
(2.6) formal als Summe von RC-Elementen nach (3.3)

N

R
Zrg = li —_t 2.7
Re = ¢ i_z_:N 1+ jwRIC? (2.7)

mit R} und C} als Parameter des i—ten RC-Elements sowie 7" = R - C; als Zeitkonstante, so folgt
aus s = In - sofort die Zeitkonstante des RC-Elements:

T(s) =m0 =1 =R.C" =1 (2.8)

Man kann festhalten, dass ein RQ-Element aus einer Serienschaltung von unendlich vielen RC-
Elementen mit den Parametern

A
=R FUA))-A;  Cr=10°¢

R o
(3 R;k

()

(2.9)

dargestellt werden kann. Die Grofie Ai ist die Schrittweite der Summe und zugleich ein Mafs fiir den
Abstand der Relaxationszeiten der einzelnen Elemente untereinander. Beachtet man, dass iAi =

"
Ti

70

In -~ gilt, so sind die Logarithmen der relativen Relaxationszeiten dquidistant.

2.3 Approximation durch endlich viele RC-Elemente

Um ein RQ-Element durch eine endliche Zahl von RC-Elementen darzustellen, bricht man die Sum-
me (2.7) nach der gewtinschten Zahl von Elementen ab. Dabei sind nur ungerade Zahlen von RC-
Elementen sinnvoll, was direkt aus den Summationsgrenzen folgt.
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Firi=—N,..,,—1,0,1,.., N erhdlt man 2N + 1 RC-Elemente mit R} nach (2.9) und 7" nach (2.8):

, Ry R-F(=NAi)-Ai
RC-~ = 73 + jwr* N 14 jwry - e NA
P _ R*)  R-F(-Ai)-Ai
RC = 1+ jwr*, 1 + jwTg - e Al
oo B RF(0)-A 2.10)
0 1+ jwrg 1+ jwTg ’
4o _ Rl R-F(A)-AQ
e jurt 1+ jwrg - €A
Ry  R-F(NAQ)-Ai

1+ jwry 1+ jwry-eNAd

Die Schrittweite A¢ ldsst sich durch die Tatsache berechnen, dass die Summe aller R} den Wider-
stand R des RQ-Elements ergeben muss und die Gewichtungsfunktion F'(s) symmetrisch ist:

Riy+..4+R ,+R.+Ri+..+R'y = R
9R- F(NAQ)-Ai+...+2R-F(2Ai)- Ai + 2R - F(Ai)-Ai+ R-F(0)-Ai = R (2.11)

Daraus folgt die Bedingung zur Bestimmung der Schrittweite Ai:

_1
N

Als Spezialfall fiir N = 0 folgt die bekannte Formel (z. B. [8-10]) fiir die Umrechnung eines RQ-
Elements in ein dquivalentes RC-Element:

2. F(NAQ) +...4+2- F(2Ai) + 2 - F(Ai) + F(0) (2.12)

. N
Ry = R-F(0)-Ai=R- - -Ai=R

. a0 1/n
CS _ TORSG _ (RQR) _ (RQ)l/n . (an)l/n _ (lenQ)l/n (2.13)

In der Ortskurvendarstellung in Bild 2.2 ist ein RQ-Element mit n = 0,9 durch 5 RC-Elemente ap-
proximiert worden. Es sind die einzelnen RC-Elemente RC} sowie die Summe aller 5 RC-Elemente,
also die Approximation, dargestellt. Dabei wurden die RC-Elemente zur besseren Darstellung der
Approximation entlang der Re-Achse verschoben.
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R=1e6
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n=0,9

Bild 2.2: Approximation eines RQ—Elements durch 5 RC—Elemente



Kapitel 3
Spezielle Impedanzelemente

Die Auswertung der Impedanzspektren erfolgt mittels aus der Elektrotechnik bekannten Impedan-
zelementen (Widerstand, Spule, Kondensator) sowie weiteren speziellen Elementen, die besondere
mikrostrukturelle Eigenschaften beschreiben [13]. Die Einzelelemente konnen dabei in einem dqui-
valenten Ersatzschaltbild beliebig miteinander kombiniert werden.

3.1 Widerstand

Werden elektrische Ladungen in einem Leiter infolge eines elektrischen Feldes bewegt, so zeigt sich
der ohmsche Widerstand. Fiir einen Leiter mit konstantem Querschnitt A erhilt man den Wider-

stand:
l l

= pZ fry . Z
Die Kenngrofien der Impedanz Z(w) = R sind somit | Z(w)| = R und ¢(w) = 0°.

R 3.1)

1
o

3.2 Kondensator

Ideale Kondensatoren eignen sich zur Beschreibung von dielektrischen Schichten. In der Realitat
weisen diese meist einen sehr grofien spezifischen Widerstand auf (z.B. Al;O3) und sorgen somit fiir
eine physikalische Trennung elektrisch leitender Gebiete. Die Kapazitit eines Plattenkondensators
lasst sich wie folgt beschreiben:

A
C= coer (3.2)

Eine Kapazitit C ergibt die Impedanz Z(w) = +15 mit |Z(w)| = - und ¢(w) = —90°.

Jw

3.3 Spule

Spulen bzw. Induktivititen treten in der Messtechnik vorwiegend als unerwiinschte Effekte wie
Leitungsinduktivitidten oder Kopplungsinduktivitaten [14] auf [weitere Refs vielleicht von Volker].
Eine Induktivitét L ergibt die Impedanz Z(w) = jwL mit |Z(w)| = wL und ¢(w) = +90°.
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3.4 Constant Phase Element

Das Constant Phase Element (CPE) ist ein analytisches Element, dass nur in einigen Spezialféllen
eine direkte physikalische Bedeutung besitzt. Fiir n = 1 entspricht es einer Kapazitit, fir n = —1
einer Induktivitdt und fiir n = 0 einem Widerstand. Das CPE wird oft bei verteilten Eigenschaften
eingesetzt, die z. B. durch inhomogene Korngrofien in polykristalliner Keramik oder durch rauhe
Elektroden verursacht werden. Das CPE wird meist parallel zu einem Widerstand als RQ-Element
als universelles Ersatzschaltbildelement eingesetzt.

Ein CPE mit den Parametern () und n ergibt die Impedanz Z(w) = m mit |Z(w)| = wiQ und

¢(w) = —n - 90°.

3.5 elektrische Ersatzschaltbilder

3.5.1 RC-Element

Die Parallelschaltung von R und C beschreibt einen realen Kondensator mit einem homogenen,
verlustbehafteten Dielektrikum. Vernachldssigt werden hierbei der Widerstand und die Induktivitat
der Zuleitungen. Die komplexe Impedanz eines RC-Elements lautet:

R R wR*C
Z(w) = = —j .
Z) = T joRC T T4 (WRCE 1+ (WRC)? (33)
Der Betrag und die Phase ergeben sich somit zu:
R
Z(w)| = —/—— und ¢(w) = —arctan(wRC) (3.4)

V14 (wRC)?

3.5.2 RQ-Element

Das RQ-Element besteht aus einer Parallelschaltung eines Widerstands und eines Elements kon-
stanter Phase (CPE). Fiir n = 1 ist es ein idealer Kondensator, fiir n = 0 ein Widerstand. Der Index n
ist ein Mafs fiir die Breite der Verteilung der elektrischen Eigenschaften, also ein Maf3 fiir die (elek-
trische) Inhomogenitat [15]. Das RCPE-Element kann kompliziertere Frequenzverldufe darstellen
(z.B. gestauchte Halbkreise), als mit einer begrenzten Anzahl von RC-Gliedern moglich wire. Es

wird beschrieben durch: R

Z(w) = ————= 3.5
Fiir die Zeitkonstante 7 und die Eckfrequenz f; eines RQ-Elements gilt:
TrRQ = (RQ) forg = (3.6)

2TTRQ - 2m(RQ)Y/™

Ein RQ-Element ldsst sich durch unendlich viele RC-Elemente darstellen sowie durch ein oder eine
endliche Anzahl von RC-Elementen annédhern (siehe Abschnitt 2).

Noch was zur Geometrie bringen? Ansonsten unter Auswertung bringen, ist wohl sinnvoller.



Kapitel 4

Statistik

Messdaten (z. B. Strom, Spannung, Temperatur, etc.) sind stets — mehr oder weniger — verrauscht.
Der gemessene Wert x; entspricht daher nicht dem tatsdchlichen Wert = der Messgrofie sondern
liegt normalerweise in der Ndhe von z. Bei sehr vielen Messungen x; der gleichen Messgrofe er-
wartet man eine Verteilung mit Maximum in x. Fiir Aussagen wie Reproduzierbarkeit oder Mess-
genauigkeit sind elementare Kenntnisse der Statistik notwendig, die hier zusammengestellt sind.

4.1 statistische Kenngrofien

Fiir diskrete Zufallsgrofien ist das i—-te Moment
N .
o = Zx}pj (1...2N) 4.1)
=1
sowie das i—te zentrale Moment
N
Z — Ozl (xl .. .a:N) (4.2)

definiert [23]. Dabei ist p; die Wahrscheinlichkeit von z;. Das erste Moment wird Erwartungswert
oder Mittelwert genannt, das zweite zentrale Moment ist die Varianz.

Fiir den Fall von gleich wahrscheinlichen diskreten Zufallsgrofien (z; ...z y) vereinfachen sich die
Kenngrofien. Dabei muss man beachten, dass bei einer endlichen Zahl IV von Messwerten nur Schét-
zungen der Statistik vorliegen. Dieser Tatsache wird im folgenden formal durch Schreibweisen wie
¢ = x Rechnung getragen, wobei ( den exakten Wert und y den Schiatzwert bezeichnet. Der Mittel-
wert ist durch

& \

| X
= % Z (4.3)
und die Varianz durch

1 N
Prst = —— Z (x; —T)? (4.4)
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definiert. Ist der Mittelwert = a priori bekannt (also nicht ebenfalls aus den Messdaten berechnet),
so ist in obiger Formel mit & zu rechnen, anderenfalls reduziert die Bestimmung des Mittelwerts
die Anzahl der Freiheitsgrade um eins. Die Standardabweichung ist die Wurzel der Varianz

o=Vo2~ Vs (4.5)

und ist ein Mass fiir die Messgenauigkeit oder Reproduzierbarkeit. Die Standardabweichung des
Mittelwerts, auch Standardfehler genannt, berechnet sich nach der Fehlerfortpflanzung (Abschnitt
4.6) zu

Se = ﬁ (4.6)

und ist folglich die Genauigkeit des Mittelwerts.

Bei Messwerten mit unterschiedlichen Varianzen muss statt des arithmetischen Mittelwerts der ge-
wichtete Mittelwert verwendet werden

Z% S wix;
T = 7 bzw. T =212 4.7)
- > wj
J

mit den Gewichtungsfaktoren w; = % Besitzen alle Messwerte die gleiche Varianz, d.h. es gilt

J
0]2» = 02, so reduziert sich der gewichtete Mittelwert auf das arithmetische Mittel (4.3).

Die Unsicherheit im gewichteten Mittelwert oder der Standardfehler berechnet sich nach der Feh-
lerfortpflanzung (Abschnitt 4.6) zu

(4.8)

Das Konfidenzintervall
T—Se-t...T+ 8¢t t= f(p,v) 4.9)

gibt den Bereich um den geschdtzten Wert Z an, in dem mit der Wahrscheinlichkeit p der wahre
Wert liegt. Dabei ist ¢ der Wert der Student-t Verteilung (Abschnitt 4.3) fiir die Wahrscheinlichkeit
p und v Freiheitsgrade.

4.2 Mehrdimensionale Zufallsgrofsen

Mehrdimensionale Zufallsgrofien treten bei Problemen mit mehr als einer Zufallsvariable auf. Hier
sind zusitzlich die Abhdngigkeiten zwischen verschiedenen Zufallsvariablen von Interesse. Die Ko-
varianz zweier Zufallsgrofien v und v ist zu

A D () (4.10)
definiert. Der Korrelationskoeffizient berechnet sich aus der Kovarianz und beschreibt die Abhan-
gigkeit der Zufallsvariablen untereinander

uv 1< pup < +1 4.11)

Dabei bedeutet Null keine Anhédngigkeit, eins und minus eins direkte Abhédngigkeit (d.h. die Zu-
fallsvariablen sind dquivalent) wobei bei minus eins die Zufallsvariablen umgekehrt proportional
sind.
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Bei mehreren Zufallsvariablen geht man auf die Matrizenschreibweise iiber und definiert die Kova-
rianzmatrix
C=(o3) (4.12)

aus den einzelnen Kovarianzen bzw. Varianzen.

4.3 Verteilungsfunktionen

Eine der wichtigsten Verteilungen ist die Normalverteilung oder Gaufsverteilung. Eine Zufallsgrofie
heifst normalverteilt, wenn sie eine Dichte folgender Gestalt besitzt:

F@) = —— exp <—1W> 4.13)

o2no 2 o

a und o sind die Parameter der Verteilung. In a liegt sowohl das Maximum als auch das Symme-
triezentrum, o ist der Abstand von diesem Zentrum zu den Wendepunkten. Die normierte und
zentrierte Normalverteilung erhélt man fiir a = 0 und o = 1:

fz) = L exp <—1x2> (4.14)

4.4 Jacobi—Matrix und Hessesche Matrix

Die Ableitung eines Spaltenvektors f() = [f1(Z) f2(Z) . .. fn(Z)]”, dessen m Komponenten { f;()}
reellwertige stetige Funktionen der n Variablen {x;} sind, ist die m x n-Matrix J(Z) der partiellen
Ableitungen J;; = 0f;/0xj,i=1,...,m,j=1,...,n

[ 9A OA ... OA T
8$1 6302 azn
J(@) = | o= O dy, (4.15)
Ofn Ofw .. Ofu
L Oz Oxa Oxn

—

Die Matrix (4.15) heifit auch die Jacobi-Matrix von f(Z) beziiglich #. Eine besondere Jacobi—-Matrix

—

ist die Vektorableitung des Gradientenvektors g(Z) = grad f(Z). Sie heifit Hessesche Matrix.

Die Hessesche Matrix ist die quadratische n x n—-Matrix der zweiten Ableitungen einer Funktion
f(#) nach den n Komponenten des Variablenvektors :

0*f ()

i =
J 8:@89@

H(z) = V2 f(Z) ij=1,...,n (4.16)

Die Hessesche Matrix wird auch curvature matrix genannt und ist die Inverse der Error-Matrix, die
héufig in Literatur zu Optimierungsalgorithmen verwendet wird.

4.5 Naiaherungen der Hesseschen Matrix

Oftmals verfiigt man nur tiber die ersten partiellen Ableitungen eines Problems, also iiber die
Jacobi-Matrix. Viele statistische Aussagen lassen sich aber nur mit Kenntnis der zweiten partiel-
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len Ableitungen, also der Hesseschen Matrix bestimmen. Beim NLS Verfahren (Abschnitt 5.1) 16st
man Probleme der Art

o1 "
=3 > R(E) (4.17)
Die Hessesche Matrix der Zielfunktion F(Z) erhdlt man durch zweimaliges partielles Ableiten
OF(T) ) 8fl ) Ofi(Z
o, = 3 Z 2f:(Z) Z fi(@) ax] (4.18)
0°F () 0fi(%) 3}2( r) 0% fi()
= 7 T == 1 .19
O0x 0z}, Z [ Oz Ox; + fil#) - 8a:j8xk] i (4.19)

(4.19) besteht aus zwei Teilen: dem Produkt der ersten partiellen Ableitungen sowie den zweiten
partiellen Ableitungen. In Matrizenschreibweise kann man obige Gleichung auch darstellen als:

H(Z) = J(@)7TI(E) + Y fi(®Bi (4.20)

Dabei ist J(Z) die m x n—Jacobi-Matrix und B; ist die Hessesche Matrix der Teilfunktion f;(Z). Passt
das gewidhlte Modell gut zu den Daten, so sind die Fehler f;(Z) klein und man kann die Summe
in obiger Gleichung vernachldssigen. Die Hessesche Matrix ldsst sich also ndherungsweise aus den
Produkten der ersten Ableitungen berechnen:

H(z) ~ J(2)TJ(Z) (4.21)

4.6 Fehlerfortpflanzung

Die Fehlerfortpflanzung ist anzuwenden bei der Berechnung von Daten aus jeweils fehlerbehafteten
Grossen, da sich die Fehler ggf. vergrossern bzw. verkleinern konnen [17, 18]. Dabei ist zwischen
statistischen Fehlern (z. B. Rauschen) und systematischen Fehlern (z. B. Spannungsoffset) zu unter-
scheiden.

4.6.1 statistische Fehler

Die Grossen z,y, ... werden anhand einer Funktion f(z,y,...) in eine neue Grosse umgerechnet.
Der Fehler dieser neuen Grosse berechnen sich nach dem Gaufsschen Fehlerfortpflanzungsgesetz:

2 2
ar= (2w (90Y s a2

Als Beispiel sei die Auftragung von In(¢7") genannt, bei der der Fehler von R bzw. ¢ von einem Fit

Programm geliefert wird. Hier ist f = In(cT') und damit Aln(¢7) = L - Ao.



Kapitel 5
Optimierung

Unter Optimierung versteht man die Aufgabe, die beste Losung fiir ein Problem zu finden [16, 26,
27, 37].

Die Beschreibung eines Optimierungsproblems beginnt mit den Grofien die bei der Optimierung
verdndert werden sollen. Diese Grofsen heifien Variablen des Problems. Da der Losungsaufwand
mit der Zahl der Variablen ansteigt, sollten nur solche Grofien als Variablen verwendet werden, de-
ren Verdnderung sich deutlich auf die Losung auswirken. Grofsen die keinen oder nur einen gerin-
gen Einflufs haben, werden konstant gehalten. Wird das Problem durch n Variablen x1, z2, . . ., 2, be-
schrieben, so kann man diese Grofien in einem n-dimensionalen Variablenvektor Z = [z125 ... 2,7

zusammenfassen.

Als nichstes muss beschrieben werden, zu welchem Zweck oder mit welchem Ziel die Variablen
verdndert werden sollen, damit sich eine optimale Losung des Problems ergibt. Dies kann ein Giite-
kriterium, eine Fehlersumme oder ein anderes Maf$ zur Beschreibung des gewiinschten Verhaltens
sein. Dieses Mafs heifit Zielfunktion (engl. objective function) und ist eine reellwertige Funktion
F(Z) der n Variablen {z;} bzw. des Variablenvektors . Die Losung des Optimierungsproblems be-
steht darin, fiir die Zielfunktion F'(Z) einen minimalen oder maximalen Wert zu finden. Hier wird
nur das Minimum behandelt, da die Suche nach einem Maximum durch Umkehr des Vorzeichens
zu einer Suche nach dem Minimum wird.

Weiterhin kann bei einem Optimierungsproblem hinzukommen, dass nicht alle Werte der Variablen
zuldssig sind oder dass bestimmte Zusammenhénge zwischen den Variablen in Form von Neben-
bedingungen eingehalten werden miissen. Dies sind die Beschrankungen des Problems (engl. cons-
traints). Die einfachsten Beschrankungen bestehen darin, dass jede Variable einzeln beschréankt ist.
So kann die absolute Temperatur oder der elektrische Widerstand keine negativen Werte annehmen:
xj > 0, oder die Aktivierungsenergie der ionischen Leitfahigkeit kann nur innerhalb einer unteren
und einer oberen Grenze variieren: [; < x; < u;. Beschrankungen kénnen auch durch Funktionen
der Variablen beschrieben sein. So darf z. B. ein thermisch aktivierter Widerstand keine negativen
Werte annehmen.

Ein Problem sollte skaliert optimiert werden. Dabei werden die tatsdchlichen Parameter P; iiber eine
Skalierungsfunktion in die Variablen z; des Optimierungsproblems umgerechnet. Durch eine Ska-
lierung soll erreicht werden, dass alle Variablen die gleiche Groflenordnung haben, tiblicherweise
|zj| =~ 1. Weiterhin kénnen so numerische Probleme durch stark unterschiedliche Wertebereiche der
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Parameter vermieden werden. Die einfachste Skalierung verwendet einen positiven Skalierungsfak-
tor.

Um nicht fiir jedes Optimierungsproblem eine eigene Losungsstrategie entwickeln zu miissen, hat
es sich als sinnvoll erwiesen eine standardisierte Formulierung anzustreben. Ein nichtlineares Op-
timierungsproblem mit linearen und nichtlinearen Beschrankungen kann allgemein wie folgt aus-
gedriickt werden:

minimiere F'(¥) beziiglich ¥ € R” mit l; < ¢;(Z) <wu; i=1,2,...,p (5.1)

In dieser Arbeit wird nur das komplizierteste Optimierungsproblem, das Minimieren einer quadra-
tischen Fehlersumme mit nichtlinearen Funktionen und nichtlinearen Beschrankungen, verwendet.
Dieses Problem bezeichnet man auch als nonlinear least squares oder NLS bzw. als complex nonlinear
least squares oder CNLS. Letzteres basiert auf komplexwertigen Stiitzstellen wie etwa Impedanzen.
Es kann durch geeignete Umformungen in ein NLS Problem {iberfiihrt werden. Die Losung von
CNLS Problemen wird in Abschnitt 5.2 ndher erldutert.

5.1 NLS Verfahren

Das NLS Verfahren bestimmt die Parameter einer Modellfunktion so, dass die Abweichung zwi-
schen Messung und Modell minimiert wird. Dabei wird angenommen, dass die Messwerte von
normalverteilten Storungen iiberlagert sind. Man definiert die Abweichung zwischen Messung und
Modell

Ay =y — y(u;) (5.2)

mit den Messwerten y;, y(u;) als Modellfunktion mit geschdtzten Parametern z; und y(z;) als Mo-
dellfunktion mit den tatsdchlichen Parametern z;, jeweils an den Stiitzstellen u;. Man kann fiir je-
den Wert x = z; die Wahrscheinlichkeit P; der Messung y; angeben, unter der Voraussetzung einer
Gaussverteilung der Messungen mit einer Standardabweichung o; um den tatsdchlichen Wert y(z;):

1 1 [Ay;1?
P, = . __ 53
. 2Wexp{2[gi” 53)
Die Wahrscheinlichkeit fiir die Messung von n Werten von y; ist das Produkt der Einzelwahrschein-
lichkeiten P;:
P(m)zHPzH( 1 )e:cp _12[%‘_9(%‘)]2 (5.4)
J ! oV 21 2 op '
Analog kann man fiir die geschitzten Parameter die Wahrscheinlichkeit angeben:
R 1 1 Ay 1?
P(z;) =1IP, =11 —= 5.5
) () “p{ [ } o

Die Methode des Maximum likelihood geht nun von der Annahme aus, dass die Messdaten mit
hoherer Wahrscheinlichkeit der gewéhlten Verteilung gehorchen als jeder anderen Verteilung, d. h.
dass (5.4) die grofite Wahrscheinlichkeit ist, die mit (5.5) erreicht werden kann. Um die Losung des
Problems zu finden, maximiert man (5.5). Der erste Teil von (5.5) ist konstant. Daher kann man
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auch die Summe im Exponenten der e-Funktion minimieren. Damit folgt die Definition von x?, der
Zielfunktion des NLS Verfahrens:

2 Ayz 2 1 2
X = Z( — ) =D () (5.6)

Nach dieser Definition kann die Varianz o2 als Gewichtungsfaktor aufgefasst werden. Ist der Fehler

einer Stiitzstelle grof3, ist auch die Varianz grofs und damit hat dieser Wert ein geringeres Gewicht.

Da fiir ein Optimierungsproblem die Zahl der Variablen n im Vergleich zur Zahl der Stiitzstellen m
von zentraler Bedeutung ist, definiert man den Freiheitsgrad eines Problems:

v=m-—n (5.7)

Fiir v = 0 ist das Problem eindeutig losbar, es existiert meist eine analytische Losung. Fiir v > 0 ist
keine eindeutige Losung angebbar, es muss eine Optimierung durchgefiihrt werden. Je hoher der
Freiheitsgrad, um so genauer kann ein Problem geldst werden. Die Zielfunktion x* hingt von der
Zahl der Freiheitsgrade ab. Werden Stiitzstellen zu einem losbaren Problem hinzugefiigt, so wird
sich x? erhohen. Daher definiert man ein reduziertes x?

=% =X (5.8)
1% m—n

Bei einer guten Losung sollte 2 nahe Eins liegen, bei einer schlechten dariiber.

Hat man eine Losung eines NLS Problems erhalten, so interessieren die Giite des Fits, die Fehler
in den geschétzten Variablen sowie weitere statistische Grofien. Eine Vielzahl dieser Aussagen kon-
nen aus der Kovarianzmatrix berechnet werden (siehe Abschnitt 4.2). Die Kovarianzmatrix C kann
wiederum aus der Hesseschen Matrix H der zweiten partiellen Ableitungen (Abschnitt 4.4) an der
Losung berechnet werden:

C=0%2-H! (5.9)

Bei Optimierungsfunktionen, die keine Hessesche Matrix an der Losung zuriickliefern, kann diese
durch die Jacobi-Matrix angendhert werden (Abschnitt 4.5):

Cro?- (I7-3)7" = (o%) (5.10)

5.2 CNLS Verfahren

Zu Beginn der Analyse von Impedanzspektren wurde vereinzelt mit dem NLS Verfahren nur der
Realteil oder der Imaginarteil der Impedanz verwendet [refs???]. Es zeigte sich allerdings bald, dass
dieser Ansatz nur unzufriedenstellende Ergebnisse ermdoglicht. Da die Impedanz eine komplexe
Grofse ist, hat es sich als hilfreich erwiesen, sowohl Real- als auch Imaginarteil in die Optimierung
mit einzubeziehen [19].

Das NLS Verfahren minimiert die Zielfunktion (5.6) mit den Messwerten oder Stiitzstellen y; und
der Modellfunktion y(x;). Der CNLS Ansatz beruht auf der geeigneten Definition der Modellfunk-
tion unter Einbeziehung der komplexen Impedanz Z. Die Abweichung der gemessenen Impedanz
Z von der Modellimpedanz Z kann iiber den Abstand ‘Z -7 ‘ definiert werden (siehe Abschnitt B).
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Da die Impedanz stark von der Frequenz und anderen Grofsen wie z. B. der Temperatur abhéngt,
kann nur ein zufriedenstellendes Ergebnis erzieht werden, wenn der Abstand gewichtet wird. In
[20] sind verschiedene Arten der Gewichtung diskutiert, es soll hier nur auf die relative Gewich-
tung (engl. modulus weighting) eingegangen werden. Die Modellfunktion oder auch Residuum
(engl. residual) f;(Z) berticksichtigt direkt den Abstand und die relative Gewichtung:

Zi— 7, 1 ~
(%) = — - \Z; - Z; 5.11
Man kann nun das CNLS Problem mit der Zielfunktion F'(Z) darstellen:
F(x)zz';fi(w):2';wi2'zi_zi (5.12)

Idealerweise sollte der Gewichtungsfaktor w; von der Qualitdt der Stiitzstelle abhidngen. Wiirde
man die Varianz 012 jeder Stiitzstelle kennen, so miisste w; = Ui? verwendet werden. Gerade bei
niedrigen Frequenzen ist eine hdufige Wiederholung der Messung fiir eine Statistik sehr umfang-
reich. Da die Gewichtungsfaktoren w; bei relativer Gewichtung aus den gemessenen Impedanzen
berechnet werden, muss man annehmen, dass die inversen Varianzen proportional zu den Betrdgen
der Impedanzen sind [16, 21]. Man setzt also an:

1
w; = -9 g = konst. (5.13)

Zi|*  of

Geht man nun davon aus, dass bei einem guten Fit x2 ungeféhr eins ist (sieche Abschnitt 5.1), so kann
die Konstante g berechnet werden, mit der die Varianzen der Messdaten sowie weitere Kenngrofsen
korrigiert werden miissen. Vergleicht man die Definition (5.12) mit (5.6) so folgt durch Koeffizien-
tenvergleich:
F(Z)
14
Die Kovarianzmatrix C kann wie in (5.10) tiber die Hessesche Matrix H aus der Jacobi—-Matrix an

und o?=x2-g-|Z? (5.14)

g%

der Losung berechnet werden. Dabei wird die Varianz o des Problems durch die Konstante g be-
schrieben [15, 21, 32].
~1
Cryg-(I7-0) = (%) (5.15)
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Anhang A

Geometrie zum RQ-Element

Teilweise aus [31, S. 17], teilweise selbst berechnet (Flachen, Achsenabschnitte).

Fiir analytische Betrachtungen der Impedanz eines RQ-Elements benétigt geometrische Daten in
der Ortskurvendarstellung. Ein unter die reelle Achse verschobener Halbkreis ist in Bild A.1 mit
den verwendeten Grofien gezeigt. Um die Fldche des verschobenen Halbkreises analytisch aus den

1 ; x| '
\ Ny I’ Re
Re Xo Xo Ro
Yo
wrp=1

-Im v

Bild A.1: Skizze zur Geometrie eines RQ—-Elements in Ortskurvendarstellung

Daten eines RQ-Elements zu berechnen benétigt man den Winkel y, den Radius r sowie z¢ und yj.
Es gelten folgende Formeln nach [31, S. 17]:

0

Yo

T ™ ™

T o v="0n_ - .

S x=s(l-n)  x=gm

avg'tahn;< w = xg - tand (A1)
2,2
+

Yo+ w =~ %
2-yo

Die Fldche eines Kreissegments berechnet sich aus der Differenz des zugehorigen Kreissektors mit
dem Winkel 2y und der doppelten Fliche des in Bild A.1 oberhalb der reelen Achse gelegenen

Dreiecks.

2x

™

1
ARQ:Agektm«fAA:%-777“272~§-x0~w:E-n-Tfog-tan[g(lfn)} (A.2)
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Nun muss man aus den Daten eines RQ-Elements die Grofsen xg und iy berechnen. Nach Bild A.1
sind das die Koordinaten des Scheitelpunkts bei wry = 1. Berechnet man (3.3) fiir diese Stelle, so
folgt mit j™ = cosng + j - sinnj:

Zrol 1 ) R R R(1+ cosng — j -sinng)
w = — = = =
kQ 70 L+j7  (L+cosnf)+j-sinng (14 cosnZ)? +sin*ng
_ 3 R(1+cosn% — j-sinnZ) R L .sinng (A3)
1+ cosn% 2 1 +cosnf '
R % -sinng
o 2 =g +cosng (Ad)
Fiir ein RC-Element gilt analog:
R R m
_ - Apo = — - 22 A5
To=5 0 Y=g RC = 5 T (A5)



Anhang B
Komplexe Arithmetik

Der Betrag einer komplexen Zahl Z
|Z| = |re+ j - im| = \/re? +im? (B.1)

Abstand zweier komplexer Zahlen

|Z —W| = |(rel+j-iml)— (re2+j-im2)| (B.2)
= |(rel —re2) + j(iml — im2)| = \/(rel — re2)? + (im1 — im2)? (B.3)

Reelle Potenz einer komplexen Zahl Z
Z" = (re+j-im)" = |Z|" - &/ = | Z|" - [cos(n - ¢) + j - sin(n - ¢)] ¢ = arctan <Z:Z> (B.4)
tiir die reelle Potenz einer rein imagindren Zahl gilt:

(j-im)" =im™ - [cos(n~ g) +j -sin(n - g) (B.5)
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