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Kapitel 1

MVCNLS Fitsoftware

Die Multi Variate Complex Nonlinear Least Squares Software ermöglicht die Bestimmung von
Parametern von höheren Modellen auf Basis der Ersatzschaltbildelemente durch die Analyse von
mehreren Impedanzspektren auf einmal. Weiterhin kann Expertenwissen über das betrachtete Werk-
stoffsystem eingebracht und natürlich auch ein klassischer Einzelfit durchgeführt werden.

Der gemeinsame Nachteil der etablierten CNLS–Programme LEVM [30, 32], EquivCrt [21, 22] und
ZPlot/ZView [1] liegt in der Analyse nur eines Impedanzspektrums auf einmal. Oftmals werden
aber Messreihen mit Variation einer Umgebungsbedingung wie Temperatur, Gasatmosphäre oder
Zeit mit Impedanzspektroskopie untersucht. Bei der Modellierung des Verhaltens in Abhängigkeit
der variierten Umgebungsbedingung sind die Änderungen der Parameter des Ersatzschaltbilds von
zentraler Bedeutung. So können z. B. durch die Variation der Temperatur die Aktivierungsenergien
der ionischen Leitfähigkeit oder durch Änderung des Sauerstoffpartialdrucks die Kinetik der Elek-
trodenreaktion bestimmt werden. Beim klassischen Verfahren wird dazu jedes Impedanzspektrum
einzeln gegen das gleiche Ersatzschaltbild gefittet und anschließend die Abhängigkeit der Parame-
ter von der Umgebungsbedingung analysiert. Dieses Zweischrittverfahren ist stark fehlerbehaftet
da Rauschen in den Parameterverläufen die tatsächliche Abhängigkeit verschleiern kann. Ausser-
dem ergeben sich bei der Analyse des höheren Modells oft sehr große Fehler, die das eigene Ver-
trauen in die Richtigkeit des gewählten Modells schmälern können. Diese Probleme resultieren aus
der Unkenntnis der höheren Modelle, die bei klassischer CNLS–Software zwangsläufig gegeben ist.
Die stets – mehr oder weniger – verrauschten Impedanzspektren werden jeweils einzeln optimal
auf das verwendete Ersatzschaltbild gefittet, das höhere Modell kann dabei auf der Strecke bleiben.

Mit der MVCNLS Software werden mehrere Impedanzspektren, die dem gleichen Ersatzschaltbild
gehorchen, auf einmal gefittet, dabei ist die Abhängigkeit jedes Ersatzschaltbildelements von der
variierten Größe durch eine breite Auswahl an Funktionen beschreibbar. Die MVCNLS Software er-
mittelt aus allen angegebenen Impedanzspektren direkt die Parameter dieser Funktionen, also des
höheren Modells. Durch diese Methode wird das fehlerbehaftete Zweischrittverfahren umgangen
und es sind wesentlich genauere und sicherere Ergebnisse erreichbar. Ein weiterer Vorteil liegt in
der Bestimmung von Prozessen, die sich bei einer Impedanzmessung nur teilweise im betrachteten
Frequenzbereich befinden. Verändert sich das Impedanzspektrum mit der Umgebungsbedingung,
was meist der Fall ist, so verschieben sich die Eckfrequenzen der Prozesse. Damit ist mit mehreren
Impedanzspektren, die einen Prozess auch nur teilweise enthalten, eine akzeptable Genauigkeit er-
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reichbar. Im Zweischrittverfahren ist dieses Problem nahezu unlösbar oder mit sehr großen Fehlern
behaftet.

Seit Beginn der 90er Jahre sind in der Literatur vereinzelt Ansätze oder Programme zu diesem The-
ma zu finden. So beschreibt Zoltowski [38, 39] den ähnlichen Ansatz MNLS sowie die Notwen-
digkeit der physikalischen Modellierung von Ersatzschaltbildelementen. Vor kurzem wurde von
Dygas [25] die MULTIFIS Software beschrieben, auch sie verwendet einen ähnlichen Ansatz wie
MVCNLS. Allerdings sind über beide Implementierungen keine weiteren Informationen bekannt
und sie sind nicht allgemein verfügbar. Die MVCNLS Software kann kostenlos vom Autor bezogen
werden, Weiterentwicklungen werden auf [3] veröffentlicht.

Im folgenden werden die MVCNLS zugrundeliegenden Modelle und Mechanismen erläutert. Dabei
wird vorwiegend das Verfahren behandelt. Eine Kurzbeschreibung für Anwender ist in Abschnitt
?? oder [3] zu finden.

1.1 Ersatzschaltbild

Bei der Auswahl möglicher Ersatzschaltbilder stand universelle Einsatzbarkeit und einfache Im-
plementierung im Vordergrund. Viele Werkstoffsysteme sind durch die Serienschaltung von RC–
Elementen beschreibbar. Aufgrund einer Verteilung der Eigenschaften einer Probe, Diffusionsbe-
grenzungen oder inhomogener Elektroden [24, 29, 31] [alle Möglichkeiten auf einmal zitieren, in
Macdonald Buch nochmal nachschauen, da müsste aber auch was drin sein] kann allerdings die
Beschreibung durch RQ–Elemente notwendig sein. Ein RQ–Element ist die Parallelschaltung aus
einem Widerstand und einem CPE. Das RQ–Element ist in Abschnitt 3 näher beschrieben. Weiter-
hin ist jedes Ersatzschaltbild in eine Serienschaltung aus RQ–Elementen transformierbar. Aus die-
sen Gründen ist in der MVCNLS Software ein Ersatzschaltbild aus beliebig vielen RQ–Elementen
in Serie implementiert.

Betrachtet man ein Material mit temperaturabhängiger Leitfähigkeit bei mehreren Temperaturen
und trägt die Werte des Q–Elements über der Temperatur auf, so beobachtet man einen exponenti-
ellen Anstieg über der Temperatur, der nicht durch einen entsprechenden Verlauf der Permittivität
begründet werden kann. Wie in Abschnitt 2 näher erläutert wird, kann man, ausgehend von der
Darstellung eines RQ–Elements als unendliche Summe von RC–Elementen, ein äquivalentes RC–
Element zu einem RQ–Element berechnen, dass das größte Gewicht in der unendlichen Summe
besitzt. Dabei bleibt der Widerstand unverändert, es wird lediglich die äquivalente Kapazität nach
C = (R1−n ·Q)1/n verwendet.

In der MVCNLS Software wird daher intern mit Widerstand R, äquivalenter Kapazität C und Index
n des RQ–Elements gerechnet. Auch alle Temperaturmodelle werden für diese drei Größen ange-
geben. Zur Berechnung der Impedanz wird aus diesen Daten wieder ein RQ–Element berechnet, es
handelt sich also nur um eine interne Darstellung, die die Modellierung erleichtert.

Die MVCNLS Software ermöglicht für jedes Ersatzschaltbildelement R, C und n getrennt die An-
gabe seiner Temperaturabhängigkeit. Dabei kann zwischen drei Varianten gewählt werden:

normal temperaturabhängig nach der allgemeinen Temperaturgleichung (1.5)

floating bei jeder Temperatur einen unterschiedlichen, voneinander unabhängigen Wert

fixed bei jeder Temperatur einen ggf. unterschiedlichen aber festen Wert

Dissertation Thilo Hilpertv0.83 6. März 2004
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Dabei stellt die Verwendung der Variante „floating“ für alle Elemente den konventionellen CNLS–
Fit dar, „fixed“ dient vorwiegend zur Vereinfachung des Ersatzschaltbilds, wie Angabe eines reinen
Widerstands oder RC– und RL–Elemente.

Ein Constant Phase Element kann eine Spule (n = −1), einen Widerstand (n = 0), einen Kondensa-
tor (n = 1) und alle Zwischenzustände annehmen (Abschnitt 3). Daher kann mit dem allgemeinen
Ersatzschaltbild aus RQ–Elementen auch ein tatsächliches Ersatzschaltbild aus reinem Widerstand,
RL– und RC–Elementen abgebildet werden.

1.2 Temperaturmodelle

Der Ansatz der MVCNLS Software erfordert die Beschreibung der Temperaturabhängigkeit aller
Ersatzschaltbildelemente R, C und n. Da diese Elemente, je nach zugrunde liegendem physikali-
schen Mechanismus, sehr unterschiedliche Temperaturverläufe besitzen können, müssen entspre-
chend viele Funktionen angeboten werden. Um trotzdem eine übersichtliche Darstellung und fle-
xible Erweiterungsmöglichkeiten zu gewährleisten, wird für alle Elemente eine einzige Funktion
verwendet, die allgemeine Temperaturgleichung x(T ). Sie enthält in einer Summe alle möglichen
Effekte und ist beliebig erweiterbar. Nicht benötigte Parameter werden zu Null gesetzt und nicht
optimiert. Somit kann für jedes Element des Ersatzschaltbilds die komplette vorhandene Auswahl
an Modellfunktionen verwendet werden, trotzdem bleibt die Darstellung übersichtlich.

Die einzelnen Parameter der allgemeinen Temperaturgleichung sind mit Großbuchstaben (A, E,
M , B, . . .) bezeichnet. Die Zuordnung zu den Modellfunktionen ist fest und wird im folgenden
beschrieben.

In einem Material mit thermisch aktivierter (Ionen-) Leitfähigkeit kann die Leitfähigkeit σ nach
folgender Gleichung angegeben werden:

σ(T ) =
A0

T
· exp

−Ea

kT
(1.1)

Dabei ist A0 ein konstanter Vorfaktor und Ea die Aktivierungsenergie der Leitfähigkeit. Berechnet
man aus der Leitfähigkeit einen Widerstand, so folgt mit

R =
1
σ
· l

Aa

das Temperaturmodell für einen thermisch aktivierten Widerstand:

x
′
(T ) = A · T · exp

E

kT
(1.2)

Für die Temperaturabhängigkeit der Permittivität bzw. der Kapazität kann in einem begrenzten
Temperaturbereich lineares oder 1/T–Verhalten angesetzt werden. Weiterhin hat der CPE–Index n

eine lineare oder gar keine Temperaturabhängigkeit [verknüpfen zu Temperaturabhängigkeit der
Permittivität und n]. Es ist daher ein lineares Verhalten

x
′′
(T ) = M · T + B (1.3)

sowie ein allgemeines Potenzgesetz
x
′′′

(T ) = D · TN (1.4)
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verfügbar, das auch für Diffusionsprozesse sowie Alterungsmechanismen verwendet werden kann.

Aus diesen Teilfunktionen ergibt sich die allgemeine Temperaturgleichung x(T ):

x(T ) = A · T · exp
E

kT
+ M · T + B + D · TN (1.5)

Es können jederzeit weitere Teilfunktionen hinzugefügt werden, wenn diese allgemeinen Zusam-
menhänge nicht für die Modellierung ausreichend sein sollten. Sollen mehrere Teilprozesse mit
dem gleichen Temperaturverhalten, z. B. zwei sich überlagernde thermisch aktivierte Leitfähigkei-
ten, modelliert werden, so kann (1.5) beliebig oft wiederholt werden.

1.3 Optimierungsproblem

Die MVCNLS Software löst das eigentliche Optimierungsproblem ähnlich den klassischen CNLS–
Ansätzen (siehe Abschnitt 5.2). Ein zentraler Unterschied ist die Betrachtung von mehreren Impe-
danzspektren auf einmal. Behandelt man diese jedoch wie eine Messung mit entsprechend vielen
Frequenzen, so kann der klassische CNLS–Ansatz (5.12) verwendet werden. Ein weiterer Unter-
schied der MVCNLS Software gegenüber klassischen Ansätzen ist die Unterstützung von Grenzen
auf alle Parameter der allgemeinen Temperaturgleichung sowie auf jeden Ersatzschaltbildparame-
ter R, C und n. Es kann sogar die Eckfrequenz eines RQ–Elements beschränkt werden. Durch diese
Grenzen oder Beschränkungen können unsinnige Werte (z. B. n > 1, R < 0, etc.) verhindert aber
auch Expertenwissen eingebracht werden. Der in vielen klassischen CNLS–Programmen verwen-
dete Levenberg–Marquardt–Algorithmus [28, 33, 34] unterstützt allerdings keine Beschränkungen.
Daher musste ein anderer Algorithmus gefunden werden, der für CNLS–Probleme geeignet ist und
lineare (Parameter der allg. Temperaturgleichung) sowie nichtlineare (Ersatzschaltbildparameter)
Grenzen unterstützt. Die Wahl viel auf den modernen Standardalgorithmus für diese Art der Pro-
blemstellung, den Algorithmus der Sequentiellen Quadratischen Programmierung (SQP). Eine Be-
schreibung des SQP Algorithmus findet sich u. a. in [26, 27, 37]. Stehle S. 188 und davor, e04unc
soll wie NPSOL implementiert sein

Da die Hauptaufgabe in der Lösung des MVCNLS Ansatzes und nicht in der Programmierung einer
weiteren SQP Implementierung lag, wurde die Funktion e04unc [5] der kommerziellen Bibliothek
NAG Mark 7 der Numerical Algorithms Group [4] ausgewählt. Sie bietet alle geforderten Eigen-
schaften und stellt eine komfortable Schnittstelle zu getesteten und bewährten Algorithmen zur
Verfügung.

Die e04unc Funktion optimiert ein NLS–Problem der Art

F (~x) =
1
2

m∑
i=1

[yi − fi(~x)]2 (1.6)

Dabei ist i = 1 . . .m und ~x = (x1, x2, . . . , xn)T , d. h. m Stützstellen und n Variablen werden be-
trachtet. Der Stützstellenvektor ~y wird zu Null gesetzt, die Funktionen fi(~x) stellen dann die Mo-
dellfunktionen oder Residuen dar, die die Abweichung zwischen Messdaten und Modell sowie die
Gewichtung enthalten (siehe Abschnitt 5.2). Es wird somit das Problem

F (~x) =
1
2

m∑
i=1

f2
i (~x) (1.7)
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mit den Residuen

fi(~x) =

∣∣∣Z(T,f)− Ẑ(~x)
∣∣∣

|Z(T,f)|
(1.8)

und den Beschränkungen

~l ≤


~x

AL · ~x
~c(~x)

 ≤ ~u (1.9)

betrachtet. Dabei ist Z die gemessene Impedanz bei der Temperatur T und Frequenz f sowie Ẑ die
aus den Variablen ~x berechnete Impedanz an der gleichen Stelle. Die Beschränkungen sind entwe-
der direkt für die Variablen, für Linearkombinationen der Variablen mit der Matrix AL : nL × n

sowie für nichtlineare Funktion der Variablen mit ~c(~x) : nN × 1 anzugeben. Die Modellimpedanz
wird aus der Serienschaltung beliebig vieler RQ Elemente berechnet:

Ẑ =
∑
RQ

Rk

1 + (jω)nkRkQk
(1.10)

Dabei können Rk, Qk über Ck und nk nach der allgemeinen Temperaturgleichung (1.5) von der
Temperatur abhängen, fixiert oder für jede Temperatur frei sein.

Da der Gradientenvektor bzw. die Jacobi–Matrix ∂fi(~x)
∂xj

nur schwierig analytisch berechenbar ist,
wird von der Möglichkeit der e04unc Funktion des Schätzens der Ableitungen nach der finiten
Differenzen Methode Gebrauch gemacht.

1.4 Bestimmung der Startwerte

Wie bei einem konventionellen CNLS–Fit müssen Startwerte für die RQ–Elemente angegeben wer-
den. Im Fall der MVCNLS Software können für jede Temperatur für alle verwendeten RQ–Elemente
Startwerte angegeben werden. Da intern mit äquivalenten Kapazitäten gearbeitet wird, die nach
(2.13) aus einem RQ–Element berechnet werden, müssen stets alle oder keine Daten eines RQ–
Elements angegeben werden, da sonst keine Umrechnung möglich ist.

Für Ersatzschaltbildelemente, die durch ein Temperaturmodell beschrieben sind, werden die Start-
werte des Temperaturmodell aus den Startwerten des Ersatzschaltbildelements durch eine separate
Optimierung bestimmt. Dazu wird für jedes R, C und n aller RQ–Elemente ein NLS–Fit mit allen
verfügbaren Startwerten durchgeführt. Dabei werden bereits alle angegebenen Grenzen für dieses
Ersatzschaltbildelement berücksichtigt. Je nach Qualität der Startwerte reichen Angaben bei zwei
Temperaturen für eine Lösung aus, durch die Angabe aller Startwerte des Ersatzschaltbildelements
werden allerdings zuverlässigere Startwerte für das Temperaturmodell gewonnen.

1.5 Skalierung

Ein Problem sollte skaliert optimiert werden (Abschnitt 5). Durch eine Skalierung wird erreicht, dass
alle Variablen die gleiche Größenordnung haben, üblicherweise |xj | ≈ 1. Die MVCNLS Software
verwendet einen positiven Skalierungsfaktor sj , der den tatsächlichen Parameter Pj auf die Variable
xj des Optimierungsproblems umrechnet.

xj = Pj · sj sj > 0 (1.11)
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Während der Optimierung ruft der Algorithmus eine benutzerdefinierte Funktion zur Berechnung
der Residuen fi(~x) auf. Dort müssen vor Berechnung der Residuen die tatsächlichen Parameter Pj

mit der Skalierung aus den aktuellen Variablen xj berechnet werden. Weiterhin müssen numerisch
berechnete Ableitungen nach den Variablen xj mit den Skalierungsfaktoren in Ableitungen nach
den Parametern Pj zurückgerechnet werden:

∂F (P )
∂P

=
∂F (P )

∂P
· ∂x

∂x
=

∂F (P )
∂x

· ∂x

∂P
=

∂F (P )
∂x

· s (1.12)

Die Ableitung der Zielfunktion F (~x) nach den Parametern Pj kann mit der Kettenregel aus den
Ableitungen der Residuen berechnet werden:

F (~x) =
1
2

[
f2
1 (~x) + f2

2 (~x) + . . . + f2
m(~x)

]
∂F (P )

∂xj
=

1
2

[
∂f2

1 (~x)
∂xj

+
∂f2

2 (~x)
∂xj

+ . . . +
∂f2

m(~x)
∂xj

]
=

1
2

[
2f1(~x)

∂f1(~x)
∂xj

+ 2f2(~x)
∂f2(~x)
∂xj

+ . . . + 2fm(~x)
∂fm(~x)

∂xj

]
Schreibt man diese Summe wieder kompakt und berücksichtigt die Skalierung, so erhält man einen
Ausdruck für die Ableitung der Zielfunktion (1.7) nach den Parametern, berechnet anhand der Re-
siduen und den Ableitungen der Residuen:

∂F (P )
∂Pj

= sj ·
m∑

i=1

fi(~x)
∂fi(~x)
∂xj

(1.13)

1.6 Statistik

Nachdem eine Lösung des Optimierungsproblems gefunden ist, sind die Güte des Fits sowie detail-
lierte Aussagen zu den Fehlern der einzelnen Parameter von großem Interesse. In diesem Abschnitt
sind die für das MVCNLS Verfahren wichtigen Zusammenhänge aus Abschnitt 4 und Abschnitt 5
zusammengefasst sowie über die Grundlagen hinausgehende Betrachtungen erläutert.

Die e04unc Fitfunktion stellt neben der Lösung ~x∗ den Wert der Zielfunktion F (~x∗) und die par-
tiellen Ableitungen der Residuen an allen Stützstellen nach allen Variablen, die Jacobi–Matrix, zur
Verfügung. Mit der Konstante g nach (5.14) und der Jacobi–Matrix J wird die Kovarianzmatrix C
berechnet:

C ≈ g ·
(
JT · J

)−1
= (σ2

jk) (1.14)

Dabei muss die zurückskalierte Jacobi–Matrix nach Abschnitt 1.5 verwendet werden. Die Konstante
g stellt eine Schätzung der Varianz des Fits dar. Die Diagonalelemente der Kovarianzmatrix C sind
die Varianzen σ2

j der Parameter.

Neben den Varianzen der Parameter sind auch die Fehler in den Ersatzschaltbildelementen R, Q

bzw. C und n von Interesse. Dazu wendet man auf die allgemeine Temperaturgleichung (1.5) die
Fehlerfortpflanzung an:

∆x =

√(
∂x

∂A

)2

·∆A2 +
(

∂x

∂E

)2

·∆E2 + . . . +
(

∂x

∂D

)2

·∆D2 +
(

∂x

∂N

)2

·∆N2 (1.15)
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Mit den partiellen Ableitungen der allgemeinen Temperaturgleichung nach den Parametern

∂x
∂A = T · exp E

kT
∂x
∂E = A

k · exp E
kT

∂x
∂M = T

∂x
∂B = 1 ∂x

∂D = TN ∂x
∂N = D · TN · lnT

(1.16)

läßt sich die Varianz in den jeweiligen Ersatzschaltbildelementen berechnen. Dabei muss man be-
achten, dass die Parameter A bis N zwar temperaturunabhängig sind, durch die Ableitungen aber
eine Temperaturabhängigkeit der Varianzen entsteht.

Da die allgemeine Temperaturgleichung für die äquivalente Kapazität C und nicht für Q gilt, muss
der Fehler in C nach (1.15) noch in einen Fehler für Q umgerechnet werden. Dies wird wieder mit
der Fehlerfortpflanzung durchgeführt:

Q = Cn ·Rn−1

∂Q

∂R
= (n− 1) ·Rn−2 · Cn ∂Q

∂C
= n ·Rn−1 · Cn−1 ∂Q

∂n
= Rn−1 · Cn(lnR + lnC)

∆Q =

√(
∂Q

∂R

)2

·∆R2 +
(

∂Q

∂C

)2

·∆C2 +
(

∂Q

∂n

)2

·∆n2 (1.17)

Das Vertrauensband gibt den Bereich um den geschätzten Parameter P ∗
j an, in dem mit der Wahr-

scheinlichkeit p der wahre Wert liegt. Es ist um so größer, je höher die Wahrscheinlichkeit ist und
wird über die geschätzte Standardabweichung σj des Parameters berechnet. Die MVCNLS Software
gibt zwei übliche Vertrauensbänder nach [35] an:

p = 95% : P ∗
j ± 1,960 · σj p = 99% : P ∗

j ± 2,576 · σj (1.18)

1.7 Informationsbeitrag einer Messung zu einem RQ–Element

Die MVCNLS Software ermöglicht die Bestimmung von RQ–Elementen, auch wenn diese bei ei-
nigen (nicht allen!) Temperaturen überhaupt nicht oder nur teilweise durch den gemessenen Fre-
quenzbereich abgedeckt sind. Als Folge eines solchen Fits erhält man Parameter der RQ–Elemente,
weiss aber zuerst nicht, bei welchen Temperaturen dieses Element bestimmbar war und bei wel-
chen nicht oder nur teilweise. Diese Information kann nach dem Fit aus den Parametern jedes RQ–
Elements und dem gemessenen Frequenzbereich berechnet werden.

Jedem RQ–Element ist eine Verteilungsfunktion G(x) zugeordnet, die einer Gauss–Glocke ähnelt.
Je kleiner n ist, umso breiter ist die Verteilungsfunktion. Sie erstreckt sich von −∞ bis +∞, hat stets
die Fläche AG = R und ist nach [36] durch

G(x) =
R

2π
· sin[(1− n) · π]
cosh[n(x− x0)]− cos[(1− n) · π]

(1.19)

gegeben. Dabei ist x = ln(ω/ω0) die logarithmische Frequenzvariable, ω0 eine beliebige aber feste
Bezugskreisfrequenz und x0 = ln(ωg/ω0) die logarithmische Eckfrequenz des RQ–Elements.

Die Verteilungsfunktion ist für x0 = 0 in Bild 1.1 für n = 0,9, n = 0,8 und n = 0,5 dargestellt.
Bei n = 1, also einem RC–Element, folgt ein Dirac–Impuls bei x0. Um ein RQ–Element aus einem
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Bild 1.1: Verteilungsfunktion eines RQ–Elements

Impedanzspektrum zu bestimmen, ist idealerweise die Messung von x1 = −∞ bis x2 = +∞ also
von f1 = 0 Hz bis f2 = ∞Hz notwendig. Da die Verteilungsfunktion schnell abklingt, kann man
z. B. einen Wert x99% definieren, mit dem zwischen −x99% und +x99% 99% der Gesamtfläche liegt.
In der Praxis wird aber nur ein praktikabler Frequenzbereich gemessen, es kann daher sein, dass die
zwischen den Grenzen des Messbereichs gelegene Fläche Amess der Verteilungsfunktion deutlich
unter 99% liegt (Bild 1.2). Die Fläche Amess kann als Maß für den Informationsbeitrag einer Messung

Bild 1.2: Fläche der Verteilungsfunktion eines RQ–Elements im Bereich von x1 bis x2

zur Bestimmung des RQ–Elements aufgefasst werden. Je näher Amess der Gesamtfläche AG kommt,
umso mehr Information trägt diese Messung zur Bestimmung des RQ–Elements bei.
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Um diese Fläche analytisch für ein gegebenes RQ–Element und einen Frequenzbereich berechnen
zu können, muss die Verteilungsfunktion im Bereich von x1 bis x2 integriert werden. Dazu geht
man von (1.19) aus und ersetzt zunächst die konstanten Teile durch Platzhalter:

A =
R

2π
· sin[(1− n) · π] B = cos[(1− n) · π] (1.20)

Die zu berechnende Fläche Amess ist das Integral über G(x) von x1 bis x2:

Amess =

x2∫
x=x1

G(x) · dx =

x2∫
x=x1

A

cosh[n(x− x0)]−B
· dx (1.21)

Nun substituiert man das Argument des cosh durch s:

s = n(x− x0) dx =
1
n
· ds s(x1) = s1 = n(x1 − x0) s(x2) = s2 = n(x2 − x0) (1.22)

Es folgt:

Amess =

s2∫
s=s1

A

cosh(s)−B
· 1
n
· ds =

s2∫
s=s1

A/n

cosh(s)−B
· ds (1.23)

Dieses Integral löst man, indem erneut substituiert wird:

es = t cosh(s) =
t2 + 1

2t
ds =

1
t
· dt t(s1) = t1 = es1 t(s2) = t2 = es2 (1.24)

Der Integrand ist nun durch eine rationale Funktion dargestellt:

Amess =

t2∫
t=t1

A/n
t2+1
2t −B

· 1
t
· dt =

t2∫
t=t1

A/n · 2
t2 + 1− 2t ·B

· dt =
2A

n

t2∫
t=t1

dt

t2 − 2B · t + 1
(1.25)

Das Integral
∫

dx
X mit X = a · x2 + b · x + c und ∆ = 4ac− b2 ist in [23] tabelliert:∫

dx

X
=

2√
∆
· arctan

(
2ax + b√

∆

)
für ∆ > 0 (1.26)

Mit den Identitäten
x ≡ t a ≡ 1 b ≡ −2B c ≡ 1 ∆ ≡ 4(1−B2) (1.27)

und der Nebenbedingung
∆ > 0 für n < 1 (1.28)

kann das Integral angegeben werden:

t2∫
t=t1

dt

t2 − 2B · t + 1
=

[
1√

1−B2
· arctan

(
t−B√
1−B2

)]t2

t=t1

(1.29)

Die Fläche Amess unter der Verteilungsfunktion (1.19) zwischen t1 = en(x1−x0) und t2 = en(x2−x0)

lautet:

Amess =
2A

n
√

1−B2

[
arctan

(
t2 −B√
1−B2

)
− arctan

(
t1 −B√
1−B2

)]
(1.30)

Zu beachten sind die Nebenbedingung 0 < n < 1 und der Zusammenhang t1 =
(

f1

fg

)n
und t2 =(

f2

fg

)n
.

Bezieht man Amess auf die maximal mögliche Fläche AG, so erhält man einen Flächenfaktor aRQ,
der zwischen 0 und 1 liegt. Für aRQ = 0 trägt die betrachtete Messung nicht zur Bestimmung des
RQ–Elements bei, für aRQ → 1 ist das RQ–Element bestmöglich durch die Messung bestimmt.
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1.8 Beispielanalyse

Das Vorgehen bei der Impedanzanalyse mit MVCNLS wird anhand einer Probe aus dichtem 3Y-
TZP demonstriert. Alle Schritte werden detailliert dargelegt sowie die Ergebnisse und Ausgaben
der MVCNLS Software diskutiert.

Die Probe besteht aus mit 3 mol% Y2O3 stabilisiertem ZrO2 (TZ-3Y, Tosoh) und ist bei 1500 ◦C für
3 h gesintert. Die Probe ist dicht (> 99,5 %), besitzt eine mittlere Korngröße von 340 nm und ist rein
tetragonal. Die Abmessungen betragen 12×8×10 mm3, die Kontaktierung erfolgte mit gesputterten
Platinelektroden mit einer Fläche von 10 × 8 mm2, der Elektrodenabstand beträgt 10 mm. Die Im-
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Bild 1.3: Impedanzspektren der 3Y-TZP Probe bei 250, 350 und 450 ◦C

pedanzspektroskopie wurde im Frequenzbereich von 0,1 Hz bis 1 MHz bei 10 Schritten pro Dekade
und 0,1 mV Amplitude ohne Bias durchgeführt. Die Temperatur wurde in 25 K Schritten von 250 ◦C
bis 450 ◦C variiert. Eine Auswahl der Impedanzspektren in Ortskurvendarstellung ist in Bild 1.3
dargestellt. Man kann die Verschiebung der Ortskurve durch die thermisch aktivierte Leitfähigkeit
des ZrO2 erkennen. Bei keiner der 9 betrachteten Temperaturen sind alle drei Beiträge von Körner,
Korngrenzen und Elektroden gleichzeitig im Frequenzbereich zu beobachten.

Für die Analyse mit MVCNLS wird ein Ersatzschaltbild aus drei RQ–Elementen in Serie (Körner,
Korngrenzen, Elektroden) verwendet. Für die Leitfähigkeit bzw. den Widerstand aller drei Elemen-
te wird thermisch aktiviertes Verhalten angesetzt. Der Index n aller CPE–Elemente wird tempera-
turunabhängig angesetzt. Die äquivalente Kapazität wird durch lineares Temperaturverhalten mit
positivem Offset modelliert. Es muss angemerkt werden, dass für die Elektroden die Temperaturab-
hängigkeiten angenommen wurden. Die Beiträge der Elektroden werden nicht weiter verwendet,
es hat sich aber gezeigt, dass eine temperaturabhängige Beschreibung des Elektrodenbeitrags zu
stabileren Fitergebnissen führt. Dies kann dadurch begründet werden, dass der Beitrag der Elek-
troden bei keiner der gemessenen Temperaturen vollständig, sogar meist überhaupt nicht oder nur
ansatzweise beobachtet werden kann.

Das Ersatzschaltbild und die Temperaturabhängigkeiten seiner Parameter wurde wie folgt defi-
niert:
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R1=f(A1,E1) A1<=1e-3 E1>=0.8 E1<=1.2

C1=f(M1,B1) M1!=-1e-14 B1!=1e-10

n1=f(B1) B1>=0.5

R2=f(A1,E1) A1<=1e-3 E1>=0.8 E1<=1.2

C2=f(M1,B1) M1!=-1e-13 B1!=1e-9 M1<=-0.8e-13 M1>=-80e-13

n2=f(B1) B1>=0.5

R3=f(A1,E1) A1<=1e-5 E1>=0.7 E1<=1.8

C3=f(M1,B1) M1!=+1e-7 B1!=1e-8

n3=f(B1) B1>=0.5 B1!=0.7

Die Größen A, E, M und B sind die Parameter der allgemeinen Temperaturgleichung (1.5), wei-
tere Informationen finden sich in der Kurzbeschreibung der MVCNLS Software in Anhang ??. Die
Grenzen sowie die Startwerte sind Erfahrungswerte. Analysiert man Wiederholungsmessungen der
gleichen Probe, die in der Ortskurve bis auf Rauschen identisch sind, mit den gleichen Startwerten,
so bekommt man ein gutes Gefühl für schlecht zu bestimmende Parameter. Im vorliegenden Fall
trat dies beim Parameter M1 von C2 auf. Durch die gewählten Grenzen konnte der Parameter sta-
bilisiert werden. Der Beitrag der Körner und Korngrenzen wird durch RQ1 und RQ2 beschrieben,
die Elektroden werden durch RQ3 dargestellt.

Startwerte für die RQ–Elemente wurden in einer Voridentifikation mit EquivCrt bei ausgewählten
Temperaturen bestimmt. Dazu wurde die Möglichkeit von EquivCrt genutzt, direkt in der Ortskur-
ve die Parameter eines RQ–Elements durch drei Punkte näherungsweise zu bestimmen. Für Körner
und Korngrenzen (RQ1 und RQ2) sind für 250 ◦C, 275 ◦C und 300 ◦C und für die Elektroden (RQ3)
für 350 ◦C, 375 ◦C und 300 ◦C Startwerte angegeben.

Die Lösung wird nach 16 Iterationen bei einem Wert der Zielfunktion von 0,34 gefunden. Die Feh-
ler der einzelnen Parameter für Aktivierungsenergien und CPE–Indicees n sind kleiner als 1 %. Für
die Fehler der Parameter der äquivalenten Kapazitäten werden Fehler bis zu 200 % berechnet. Dies
zeigt die Schwierigkeiten für die nur sehr schwach temperaturabhängige Kapazität eindeutige Ab-
hängigkeiten zu bestimmen. Alle Parameter und Fehler sind in Tabelle 1.1 zusammengestellt. Die

Tabelle 1.1: Ergebnisse des MVCNLS Fits einer dichten 3Y-TZP Probe.

Abhängig- Körner (RQ1) Korngrenzen (RQ2) Elektroden (RQ3)
keit R C n R C n R C n

A1 / Ohm 1,90e-6 2,68e-8 3,88e-10
σA1 0,8% 2,6% 125%

E1 / eV 0,921 1,121 1,444
σE1 0,1% 0,1% 5,2%

M1 / (F/K) -1,17e-14 -1,40e-13 8,68e-8
σM1 2,9% 169% 227%

B1 / F 1,13e-11 8,84e-10 8,44e-5
σB1 1,6% 15% 166%

B1 0,85 0,93 0,74
σB1 0,4% 1,3% 2,6%
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Leistungsfähigkeit des MVCNLS Verfahrens gegenüber einer Einzelanalyse jedes Spektrums zeigt
sich in Bild 1.4. Obwohl die Elektrode bei 250 ◦C gar nicht und bei 350 ◦C nur teilweise im Frequenz-
bereich zu beobachten ist, konnte sie bei jeder Temperatur gut bestimmt werden. Ebenso kann der
Beitrag der Körner ab 350 ◦C nur mit großen Fehlern in einer Einzelanalyse bestimmt werden. Durch
das MVCNLS Verfahren ist dies auch bei höheren Temperaturen möglich. Die Prozentangaben nahe
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Bild 1.4: gemessene und aus dem Fitergebnis berechnete Impedanzspektren der 3Y-TZP Probe bei 250, 350
und 450 ◦C

jedem Halbkreis in Bild 1.4 geben den Informationsbeitrag (siehe Abschnitt 1.7) dieser Messung zur
Bestimmung des entsprechenden Elements des Ersatzschaltbilds an. So trägt z. B. die Messung bei
350 ◦C nur zu 14 % des maximal möglichen Beitrags zur Bestimmung des Körneranteils bei.
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Kapitel 2

Darstellung eines RQ–Elements durch
endlich viele RC–Elemente

Oftmals sind Halbkreise im Impedanzspektrum gestaucht, d. h. es muss mit RQ– statt RC– Ele-
menten gefittet werden [7]. Als mögliche Ursachen werden in der Literatur [24, 29, 31] Verteilung
der Eigenschaften einer Probe, Diffusionsbegrenzungen oder inhomogene Elektroden genannt. Be-
schränkt man sich auf polykristalline Keramiken ohne Elektrodeneffekte, so kommt nur die In-
homogenität der elektrischen Eigenschaften als Ursache für RQ–Verhalten in Betracht. Die Inho-
mogenität kann durch eine Verteilung der Korngrößen, unterschiedliche Porengrößen oder auch
ungleichmäßige Verteilung des Stabilisatorgehalts verursacht sein.

Der Parameter Q eines RQ–Elements stellt schon formal keine Kapazität dar (Abschnitt 3.4) und
kann daher nicht direkt mit dielektrischen Eigenschaften korreliert werden. Wie im folgenden dar-
gestellt wird, muss für eine Modellierung der Kapazität (z. B. als Funktion der Temperatur, einer
Schichtdicke, etc.) diese zuerst aus dem RQ–Element berechnet werden.

2.1 Integrale Darstellung eines RQ–Elements

Ein RQ–Element (Abschnitt 3.4) kann durch die Serienschaltung von unendlich vielen RC–Elementen
dargestellt werden. In der Literatur (z. B. [6, 9–11]) herrscht Einigkeit über die integrale Darstellung
eines RQ–Elements:

ZRQ =

∞∫
−∞

R

1 + jωRC(s)
· F (s) · ds (2.1)

Dabei ist s = ln τ
τ0

mit τ0 = (RQ)1/n und C(s) = (R1−n ·Q)1/n · es.

Die Gewichtungsfunktion F (s) ist in der Literatur allerdings unterschiedlich definiert. Geht man
von [6] aus und verwendet den Zusammenhang α = 1− n so ergibt sich die Gewichtungsfunktion
zu:

F (s) =
1
2π
· sin [(1− n) · π]
cosh [n · s]− cos [(1− n) · π]

(2.2)

Dagegen findet man bei [11] eine zweite

F ′(s) =
1
2π
· sin (1− n)
cosh (n · s)− cos (1− n)
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und bei [8, 9] eine dritte Interpretation von [6]:

F ′′(s) =
1
2π
·

sin [(1− n) · π
2 ]

cosh [n · s]− cos [(1− n) · π
2 ]

Bei diesen verschiedenen Definitionen der Gewichtungsfunktion muss man beachten, dass sie alle
auf der gleichen Veröffentlichung von Cole aufbauen. Die Gleichung (2.2) wird in [6] aus einer
Arbeit von Fuoss und Kirkwood [12] abgeleitet. Dort findet sich auch der Zusammenhang zwischen
Gewichtungsfunktion F (s) und der Verteilungsfunktion der Relaxationszeiten G(τ):

F (s) = τ ·G(τ) (2.3)

In [31] wird diese Verteilungsfunktion zu

G(τ) =
1

2πτ
· sin[απ]
cosh[(1− α) · s− cos[απ]

(2.4)

angegeben. Zusammen mit Gleichung (2.3) und α = 1 − n folgt daraus die Darstellung nach Glei-
chung (2.2).

Ein weiteres Indiz für die Richtigkeit von (2.2) ist die Normierung der Gewichtungsfunktion F (s).
Nach [6, 12, 31] muss die Gewichtungsfunktion auf 1 normiert sein:

∞∫
−∞

F (s) · ds
!= 1 (2.5)

Gleichung (2.2) erfüllt diese Bedingung, die beiden anderen Darstellungen nach [11] und [8, 9] lie-
fern einen Wert größer 1.

Daher wird in dieser Arbeit mit der Gewichtungsfunktion F (s) nach (2.2) gearbeitet.

Die Gewichtungsfunktion F (s) nach (2.2) ist für n = 0,9 und n = 0,7 in Bild 2.1 dargestellt.
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Bild 2.1: Gewichtungsfunktion F (s) für n = 0,9 und n = 0,7
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2.2 Summendarstellung eines RQ–Elements

Ein RQ–Element kann durch die Serienschaltung von unendlich vielen RC–Elementen dargestellt
werden. Von praktischen Nutzen ist allerdings die Approximation mit endlich vielen RC–Elementen.
Die Fragestellung ist nun, wie die Daten der RC–Elemente bei bekannter Anzahl aus den Daten des
RQ–Elements berechnet werden können.

Dazu schreibt man (2.1) als unendliche Summe:

ZRQ = lim
N→∞

N∑
i=−N

R · F (i∆i) ·∆i

1 + jωRC(i∆i)
(2.6)

Dabei wird die Integrationsvariable s durch s = i∆i bzw. ds durch ds = ∆i ersetzt. Schreibt man
(2.6) formal als Summe von RC–Elementen nach (3.3)

ZRQ = lim
N→∞

N∑
i=−N

R∗
i

1 + jωR∗
i C

∗
i

(2.7)

mit R∗
i und C∗

i als Parameter des i–ten RC–Elements sowie τ∗i = R∗
i · C∗

i als Zeitkonstante, so folgt
aus s = ln τ

τ0
sofort die Zeitkonstante des RC–Elements:

τ(s) = τ0 · es = τ0 · ei∆i = R∗ · C∗ = τ∗i (2.8)

Man kann festhalten, dass ein RQ–Element aus einer Serienschaltung von unendlich vielen RC–
Elementen mit den Parametern

R∗
i = R · F (i∆i) ·∆i C∗

i =
τ0 · ei∆i

R∗
i

(2.9)

dargestellt werden kann. Die Größe ∆i ist die Schrittweite der Summe und zugleich ein Maß für den
Abstand der Relaxationszeiten der einzelnen Elemente untereinander. Beachtet man, dass i∆i =
ln τ∗i

τ0
gilt, so sind die Logarithmen der relativen Relaxationszeiten äquidistant.

2.3 Approximation durch endlich viele RC–Elemente

Um ein RQ–Element durch eine endliche Zahl von RC–Elementen darzustellen, bricht man die Sum-
me (2.7) nach der gewünschten Zahl von Elementen ab. Dabei sind nur ungerade Zahlen von RC–
Elementen sinnvoll, was direkt aus den Summationsgrenzen folgt.
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Für i = −N, ..,−1, 0, 1, .., N erhält man 2N + 1 RC–Elemente mit R∗
i nach (2.9) und τ∗i nach (2.8):

ZRC−N
=

R∗
−N

1 + jωτ∗−N

=
R · F (−N∆i) ·∆i

1 + jωτ0 · e−N∆i

...

ZRC−1 =
R∗
−1

1 + jωτ∗−1

=
R · F (−∆i) ·∆i

1 + jωτ0 · e−∆i

ZRC0 =
R∗

0

1 + jωτ∗0
=

R · F (0) ·∆i

1 + jωτ0
(2.10)

ZRC1 =
R∗

1

1 + jωτ∗1
=

R · F (∆i) ·∆i

1 + jωτ0 · e∆i

...

ZRCN
=

R∗
N

1 + jωτ∗N
=

R · F (N∆i) ·∆i

1 + jωτ0 · eN∆i

Die Schrittweite ∆i lässt sich durch die Tatsache berechnen, dass die Summe aller R∗
i den Wider-

stand R des RQ–Elements ergeben muss und die Gewichtungsfunktion F (s) symmetrisch ist:

R∗
−N + . . . + R∗

−1 + R∗
0 + R∗

1 + . . . + R∗
−N

!= R

2R · F (N∆i) ·∆i + . . . + 2R · F (2∆i) ·∆i + 2R · F (∆i) ·∆i + R · F (0) ·∆i
!= R (2.11)

Daraus folgt die Bedingung zur Bestimmung der Schrittweite ∆i:

2 · F (N∆i) + . . . + 2 · F (2∆i) + 2 · F (∆i) + F (0) =
1

∆i
(2.12)

Als Spezialfall für N = 0 folgt die bekannte Formel (z. B. [8–10]) für die Umrechnung eines RQ–
Elements in ein äquivalentes RC–Element:

R∗
0 = R · F (0) ·∆i = R · 1

∆i
·∆i = R

C∗
0 =

τ0 · e0

R∗
0

=
(RQ)1/n

R
= (RQ)1/n · (R−n)1/n = (R1−nQ)1/n (2.13)

In der Ortskurvendarstellung in Bild 2.2 ist ein RQ–Element mit n = 0,9 durch 5 RC–Elemente ap-
proximiert worden. Es sind die einzelnen RC–Elemente RC∗

i sowie die Summe aller 5 RC–Elemente,
also die Approximation, dargestellt. Dabei wurden die RC–Elemente zur besseren Darstellung der
Approximation entlang der Re–Achse verschoben.
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Bild 2.2: Approximation eines RQ–Elements durch 5 RC–Elemente
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Kapitel 3

Spezielle Impedanzelemente

Die Auswertung der Impedanzspektren erfolgt mittels aus der Elektrotechnik bekannten Impedan-
zelementen (Widerstand, Spule, Kondensator) sowie weiteren speziellen Elementen, die besondere
mikrostrukturelle Eigenschaften beschreiben [13]. Die Einzelelemente können dabei in einem äqui-
valenten Ersatzschaltbild beliebig miteinander kombiniert werden.

3.1 Widerstand

Werden elektrische Ladungen in einem Leiter infolge eines elektrischen Feldes bewegt, so zeigt sich
der ohmsche Widerstand. Für einen Leiter mit konstantem Querschnitt A erhält man den Wider-
stand:

R = ρ
l

A
=

1
σ
· l

A
(3.1)

Die Kenngrößen der Impedanz Z(ω) = R sind somit |Z(ω)| = R und φ(ω) = 0°.

3.2 Kondensator

Ideale Kondensatoren eignen sich zur Beschreibung von dielektrischen Schichten. In der Realität
weisen diese meist einen sehr großen spezifischen Widerstand auf (z.B. Al2O3) und sorgen somit für
eine physikalische Trennung elektrisch leitender Gebiete. Die Kapazität eines Plattenkondensators
lässt sich wie folgt beschreiben:

C = ε0εr
A

d
(3.2)

Eine Kapazität C ergibt die Impedanz Z(ω) = 1
jωC mit |Z(ω)| = 1

ωC und φ(ω) = −90°.

3.3 Spule

Spulen bzw. Induktivitäten treten in der Messtechnik vorwiegend als unerwünschte Effekte wie
Leitungsinduktivitäten oder Kopplungsinduktivitäten [14] auf [weitere Refs vielleicht von Volker].
Eine Induktivität L ergibt die Impedanz Z(ω) = jωL mit |Z(ω)| = ωL und φ(ω) = +90°.
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3.4 Constant Phase Element

Das Constant Phase Element (CPE) ist ein analytisches Element, dass nur in einigen Spezialfällen
eine direkte physikalische Bedeutung besitzt. Für n = 1 entspricht es einer Kapazität, für n = −1
einer Induktivität und für n = 0 einem Widerstand. Das CPE wird oft bei verteilten Eigenschaften
eingesetzt, die z. B. durch inhomogene Korngrößen in polykristalliner Keramik oder durch rauhe
Elektroden verursacht werden. Das CPE wird meist parallel zu einem Widerstand als RQ–Element
als universelles Ersatzschaltbildelement eingesetzt.

Ein CPE mit den Parametern Q und n ergibt die Impedanz Z(ω) = 1
(jω)nQ mit |Z(ω)| = 1

ωnQ und
φ(ω) = −n · 90°.

3.5 elektrische Ersatzschaltbilder

3.5.1 RC–Element

Die Parallelschaltung von R und C beschreibt einen realen Kondensator mit einem homogenen,
verlustbehafteten Dielektrikum. Vernachlässigt werden hierbei der Widerstand und die Induktivität
der Zuleitungen. Die komplexe Impedanz eines RC–Elements lautet:

Z(ω) =
R

1 + jωRC
=

R

1 + (ωRC)2
− j

ωR2C

1 + (ωRC)2
(3.3)

Der Betrag und die Phase ergeben sich somit zu:

|Z(ω)| = R√
1 + (ωRC)2

und φ(ω) = − arctan(ωRC) (3.4)

3.5.2 RQ–Element

Das RQ–Element besteht aus einer Parallelschaltung eines Widerstands und eines Elements kon-
stanter Phase (CPE). Für n = 1 ist es ein idealer Kondensator, für n = 0 ein Widerstand. Der Index n

ist ein Maß für die Breite der Verteilung der elektrischen Eigenschaften, also ein Maß für die (elek-
trische) Inhomogenität [15]. Das RCPE–Element kann kompliziertere Frequenzverläufe darstellen
(z.B. gestauchte Halbkreise), als mit einer begrenzten Anzahl von RC–Gliedern möglich wäre. Es
wird beschrieben durch:

Z(ω) =
R

1 + (jω)nRQ
(3.5)

Für die Zeitkonstante τ und die Eckfrequenz f0 eines RQ–Elements gilt:

τRQ = (RQ)1/n f0,RQ =
1

2πτRQ
=

1
2π(RQ)1/n

(3.6)

Ein RQ–Element lässt sich durch unendlich viele RC–Elemente darstellen sowie durch ein oder eine
endliche Anzahl von RC–Elementen annähern (siehe Abschnitt 2).

Noch was zur Geometrie bringen? Ansonsten unter Auswertung bringen, ist wohl sinnvoller.
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Kapitel 4

Statistik

Messdaten (z. B. Strom, Spannung, Temperatur, etc.) sind stets – mehr oder weniger – verrauscht.
Der gemessene Wert x1 entspricht daher nicht dem tatsächlichen Wert x der Messgröße sondern
liegt normalerweise in der Nähe von x. Bei sehr vielen Messungen xj der gleichen Messgröße er-
wartet man eine Verteilung mit Maximum in x. Für Aussagen wie Reproduzierbarkeit oder Mess-
genauigkeit sind elementare Kenntnisse der Statistik notwendig, die hier zusammengestellt sind.

4.1 statistische Kenngrößen

Für diskrete Zufallsgrößen ist das i–te Moment

αi =
N∑

j=1

xi
jpj (x1 . . . xN ) (4.1)

sowie das i–te zentrale Moment

µi =
N∑

j=1

(xj − α1)ipj (x1 . . . xN ) (4.2)

definiert [23]. Dabei ist pj die Wahrscheinlichkeit von xj . Das erste Moment wird Erwartungswert
oder Mittelwert genannt, das zweite zentrale Moment ist die Varianz.

Für den Fall von gleich wahrscheinlichen diskreten Zufallsgrößen (x1 . . . xN ) vereinfachen sich die
Kenngrößen. Dabei muss man beachten, dass bei einer endlichen Zahl N von Messwerten nur Schät-
zungen der Statistik vorliegen. Dieser Tatsache wird im folgenden formal durch Schreibweisen wie
ζ ≈ χ Rechnung getragen, wobei ζ den exakten Wert und χ den Schätzwert bezeichnet. Der Mittel-
wert ist durch

µ ≈ x =
1
N

N∑
j=1

xj (4.3)

und die Varianz durch

σ2 ≈ s2 =
1

N − 1

N∑
j=1

(xj − x)2 (4.4)
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definiert. Ist der Mittelwert x a priori bekannt (also nicht ebenfalls aus den Messdaten berechnet),
so ist in obiger Formel mit 1

N zu rechnen, anderenfalls reduziert die Bestimmung des Mittelwerts
die Anzahl der Freiheitsgrade um eins. Die Standardabweichung ist die Wurzel der Varianz

σ =
√

σ2 ≈
√

s2 (4.5)

und ist ein Mass für die Messgenauigkeit oder Reproduzierbarkeit. Die Standardabweichung des
Mittelwerts, auch Standardfehler genannt, berechnet sich nach der Fehlerfortpflanzung (Abschnitt
4.6) zu

se =
s√
N

(4.6)

und ist folglich die Genauigkeit des Mittelwerts.

Bei Messwerten mit unterschiedlichen Varianzen muss statt des arithmetischen Mittelwerts der ge-
wichtete Mittelwert verwendet werden

x =

∑ xj

σ2
j∑ 1

σ2
j

bzw. x =
∑

wjxj∑
wj

(4.7)

mit den Gewichtungsfaktoren wj = 1
σ2

j
. Besitzen alle Messwerte die gleiche Varianz, d. h. es gilt

σ2
j = σ2, so reduziert sich der gewichtete Mittelwert auf das arithmetische Mittel (4.3).

Die Unsicherheit im gewichteten Mittelwert oder der Standardfehler berechnet sich nach der Feh-
lerfortpflanzung (Abschnitt 4.6) zu

se =

√
1∑
wj

(4.8)

Das Konfidenzintervall
x̂− se · t . . . x̂ + se · t t = f(p,ν) (4.9)

gibt den Bereich um den geschätzten Wert x̂ an, in dem mit der Wahrscheinlichkeit p der wahre
Wert liegt. Dabei ist t der Wert der Student–t Verteilung (Abschnitt 4.3) für die Wahrscheinlichkeit
p und ν Freiheitsgrade.

4.2 Mehrdimensionale Zufallsgrößen

Mehrdimensionale Zufallsgrößen treten bei Problemen mit mehr als einer Zufallsvariable auf. Hier
sind zusätzlich die Abhängigkeiten zwischen verschiedenen Zufallsvariablen von Interesse. Die Ko-
varianz zweier Zufallsgrößen u und v ist zu

σ2
uv ≈ s2

uv =
1

N − 1

∑
[(ui − u)(vi − v)] (4.10)

definiert. Der Korrelationskoeffizient berechnet sich aus der Kovarianz und beschreibt die Abhän-
gigkeit der Zufallsvariablen untereinander

ρuv =
σ2

uv

σu · σv
− 1 ≤ ρuv ≤ +1 (4.11)

Dabei bedeutet Null keine Anhängigkeit, eins und minus eins direkte Abhängigkeit (d. h. die Zu-
fallsvariablen sind äquivalent) wobei bei minus eins die Zufallsvariablen umgekehrt proportional
sind.
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Bei mehreren Zufallsvariablen geht man auf die Matrizenschreibweise über und definiert die Kova-
rianzmatrix

C = (σ2
jk) (4.12)

aus den einzelnen Kovarianzen bzw. Varianzen.

4.3 Verteilungsfunktionen

Eine der wichtigsten Verteilungen ist die Normalverteilung oder Gaußverteilung. Eine Zufallsgröße
heißt normalverteilt, wenn sie eine Dichte folgender Gestalt besitzt:

f(x) =
1√
2πσ

exp
(
−1

2
(x− a)2

σ2

)
(4.13)

a und σ sind die Parameter der Verteilung. In a liegt sowohl das Maximum als auch das Symme-
triezentrum, σ ist der Abstand von diesem Zentrum zu den Wendepunkten. Die normierte und
zentrierte Normalverteilung erhält man für a = 0 und σ = 1:

f(x) =
1√
2π

exp
(
−1

2
x2

)
(4.14)

4.4 Jacobi–Matrix und Hessesche Matrix

Die Ableitung eines Spaltenvektors ~f(~x) = [f1(~x) f2(~x) . . . fm(~x)]T , dessen m Komponenten {fi(~x)}
reellwertige stetige Funktionen der n Variablen {xj} sind, ist die m × n–Matrix J(~x) der partiellen
Ableitungen Jij = ∂fi/∂xj , i = 1, . . . ,m, j = 1, . . . , n:

J(~x) =


∂f1

∂x1

∂f1

∂x2
· · · ∂f1

∂xn

∂f2

∂x1

∂f2

∂x2
· · · ∂f2

∂xn
...

...
. . .

...
∂fm

∂x1

∂fm

∂x2
· · · ∂fm

∂xn

 (4.15)

Die Matrix (4.15) heißt auch die Jacobi–Matrix von ~f(~x) bezüglich ~x. Eine besondere Jacobi–Matrix
ist die Vektorableitung des Gradientenvektors ~g(~x) = grad~f(~x). Sie heißt Hessesche Matrix.

Die Hessesche Matrix ist die quadratische n × n–Matrix der zweiten Ableitungen einer Funktion
~f(~x) nach den n Komponenten des Variablenvektors ~x:

H(x) = ∇2 ~f(~x) Hij =
∂2 ~f(~x)
∂xi∂xj

i,j = 1, . . . , n (4.16)

Die Hessesche Matrix wird auch curvature matrix genannt und ist die Inverse der Error–Matrix, die
häufig in Literatur zu Optimierungsalgorithmen verwendet wird.

4.5 Näherungen der Hesseschen Matrix

Oftmals verfügt man nur über die ersten partiellen Ableitungen eines Problems, also über die
Jacobi–Matrix. Viele statistische Aussagen lassen sich aber nur mit Kenntnis der zweiten partiel-
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len Ableitungen, also der Hesseschen Matrix bestimmen. Beim NLS Verfahren (Abschnitt 5.1) löst
man Probleme der Art

F (~x) =
1
2

∑
m

f2
i (~x) (4.17)

Die Hessesche Matrix der Zielfunktion F (~x) erhält man durch zweimaliges partielles Ableiten

∂F (~x)
∂xj

=
1
2

∑
m

2fi(~x) · ∂fi(~x)
∂xj

=
∑
m

fi(~x) · ∂fi(~x)
∂xj

(4.18)

∂2F (~x)
∂xj∂xk

=
∑
m

[
∂fi(~x)
∂xk

· ∂fi(~x)
∂xj

+ fi(~x) · ∂2fi(~x)
∂xj∂xk

]
= Hij (4.19)

(4.19) besteht aus zwei Teilen: dem Produkt der ersten partiellen Ableitungen sowie den zweiten
partiellen Ableitungen. In Matrizenschreibweise kann man obige Gleichung auch darstellen als:

H(~x) = J(~x)T J(~x) +
∑
m

fi(~x)Bi (4.20)

Dabei ist J(~x) die m×n–Jacobi–Matrix und Bi ist die Hessesche Matrix der Teilfunktion fi(~x). Passt
das gewählte Modell gut zu den Daten, so sind die Fehler fi(~x) klein und man kann die Summe
in obiger Gleichung vernachlässigen. Die Hessesche Matrix lässt sich also näherungsweise aus den
Produkten der ersten Ableitungen berechnen:

H(~x) ≈ J(~x)T J(~x) (4.21)

4.6 Fehlerfortpflanzung

Die Fehlerfortpflanzung ist anzuwenden bei der Berechnung von Daten aus jeweils fehlerbehafteten
Grössen, da sich die Fehler ggf. vergrössern bzw. verkleinern können [17, 18]. Dabei ist zwischen
statistischen Fehlern (z. B. Rauschen) und systematischen Fehlern (z. B. Spannungsoffset) zu unter-
scheiden.

4.6.1 statistische Fehler

Die Grössen x,y, . . . werden anhand einer Funktion f(x,y, . . .) in eine neue Grösse umgerechnet.
Der Fehler dieser neuen Grösse berechnen sich nach dem Gaußschen Fehlerfortpflanzungsgesetz:

∆f =

√(
∂f

∂x

)2

·∆2x +
(

∂f

∂y

)2

·∆2y + . . . (4.22)

Als Beispiel sei die Auftragung von ln(σT ) genannt, bei der der Fehler von R bzw. σ von einem Fit
Programm geliefert wird. Hier ist f = ln(σT ) und damit ∆ ln(σT ) = 1

σ ·∆σ.
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Kapitel 5

Optimierung

Unter Optimierung versteht man die Aufgabe, die beste Lösung für ein Problem zu finden [16, 26,
27, 37].

Die Beschreibung eines Optimierungsproblems beginnt mit den Größen die bei der Optimierung
verändert werden sollen. Diese Größen heißen Variablen des Problems. Da der Lösungsaufwand
mit der Zahl der Variablen ansteigt, sollten nur solche Größen als Variablen verwendet werden, de-
ren Veränderung sich deutlich auf die Lösung auswirken. Größen die keinen oder nur einen gerin-
gen Einfluß haben, werden konstant gehalten. Wird das Problem durch n Variablen x1, x2, . . . , xn be-
schrieben, so kann man diese Größen in einem n-dimensionalen Variablenvektor ~x = [x1x2 . . . xn]T

zusammenfassen.

Als nächstes muss beschrieben werden, zu welchem Zweck oder mit welchem Ziel die Variablen
verändert werden sollen, damit sich eine optimale Lösung des Problems ergibt. Dies kann ein Güte-
kriterium, eine Fehlersumme oder ein anderes Maß zur Beschreibung des gewünschten Verhaltens
sein. Dieses Maß heißt Zielfunktion (engl. objective function) und ist eine reellwertige Funktion
F (~x) der n Variablen {xj} bzw. des Variablenvektors ~x. Die Lösung des Optimierungsproblems be-
steht darin, für die Zielfunktion F (~x) einen minimalen oder maximalen Wert zu finden. Hier wird
nur das Minimum behandelt, da die Suche nach einem Maximum durch Umkehr des Vorzeichens
zu einer Suche nach dem Minimum wird.

Weiterhin kann bei einem Optimierungsproblem hinzukommen, dass nicht alle Werte der Variablen
zulässig sind oder dass bestimmte Zusammenhänge zwischen den Variablen in Form von Neben-
bedingungen eingehalten werden müssen. Dies sind die Beschränkungen des Problems (engl. cons-
traints). Die einfachsten Beschränkungen bestehen darin, dass jede Variable einzeln beschränkt ist.
So kann die absolute Temperatur oder der elektrische Widerstand keine negativen Werte annehmen:
xj ≥ 0, oder die Aktivierungsenergie der ionischen Leitfähigkeit kann nur innerhalb einer unteren
und einer oberen Grenze variieren: lj ≤ xj ≤ uj . Beschränkungen können auch durch Funktionen
der Variablen beschrieben sein. So darf z. B. ein thermisch aktivierter Widerstand keine negativen
Werte annehmen.

Ein Problem sollte skaliert optimiert werden. Dabei werden die tatsächlichen Parameter Pj über eine
Skalierungsfunktion in die Variablen xj des Optimierungsproblems umgerechnet. Durch eine Ska-
lierung soll erreicht werden, dass alle Variablen die gleiche Größenordnung haben, üblicherweise
|xj | ≈ 1. Weiterhin können so numerische Probleme durch stark unterschiedliche Wertebereiche der
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Parameter vermieden werden. Die einfachste Skalierung verwendet einen positiven Skalierungsfak-
tor.

Um nicht für jedes Optimierungsproblem eine eigene Lösungsstrategie entwickeln zu müssen, hat
es sich als sinnvoll erwiesen eine standardisierte Formulierung anzustreben. Ein nichtlineares Op-
timierungsproblem mit linearen und nichtlinearen Beschränkungen kann allgemein wie folgt aus-
gedrückt werden:

minimiere F (~x) bezüglich ~x ∈ Rn mit li ≤ ci(~x) ≤ ui i = 1, 2, . . . , p (5.1)

In dieser Arbeit wird nur das komplizierteste Optimierungsproblem, das Minimieren einer quadra-
tischen Fehlersumme mit nichtlinearen Funktionen und nichtlinearen Beschränkungen, verwendet.
Dieses Problem bezeichnet man auch als nonlinear least squares oder NLS bzw. als complex nonlinear
least squares oder CNLS. Letzteres basiert auf komplexwertigen Stützstellen wie etwa Impedanzen.
Es kann durch geeignete Umformungen in ein NLS Problem überführt werden. Die Lösung von
CNLS Problemen wird in Abschnitt 5.2 näher erläutert.

5.1 NLS Verfahren

Das NLS Verfahren bestimmt die Parameter einer Modellfunktion so, dass die Abweichung zwi-
schen Messung und Modell minimiert wird. Dabei wird angenommen, dass die Messwerte von
normalverteilten Störungen überlagert sind. Man definiert die Abweichung zwischen Messung und
Modell

∆yi = yi − ŷ(ui) (5.2)

mit den Messwerten yi, ŷ(ui) als Modellfunktion mit geschätzten Parametern x̂j und y(xi) als Mo-
dellfunktion mit den tatsächlichen Parametern xj , jeweils an den Stützstellen ui. Man kann für je-
den Wert x = xj die Wahrscheinlichkeit Pi der Messung yi angeben, unter der Voraussetzung einer
Gaussverteilung der Messungen mit einer Standardabweichung σi um den tatsächlichen Wert y(xi):

Pi =
1

σi

√
2π
· exp

{
−1

2

[
∆yi

σi

]2
}

(5.3)

Die Wahrscheinlichkeit für die Messung von n Werten von yi ist das Produkt der Einzelwahrschein-
lichkeiten Pi:

P (xj) = ΠPi = Π
(

1
σi

√
2π

)
exp

{
−1

2

∑ [
yi − y(xi)

σi

]2
}

(5.4)

Analog kann man für die geschätzten Parameter die Wahrscheinlichkeit angeben:

P (x̂j) = ΠPi = Π
(

1
σi

√
2π

)
exp

{
−1

2

∑ [
∆yi

σi

]2
}

(5.5)

Die Methode des Maximum likelihood geht nun von der Annahme aus, dass die Messdaten mit
höherer Wahrscheinlichkeit der gewählten Verteilung gehorchen als jeder anderen Verteilung, d. h.
dass (5.4) die größte Wahrscheinlichkeit ist, die mit (5.5) erreicht werden kann. Um die Lösung des
Problems zu finden, maximiert man (5.5). Der erste Teil von (5.5) ist konstant. Daher kann man
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auch die Summe im Exponenten der e-Funktion minimieren. Damit folgt die Definition von χ2, der
Zielfunktion des NLS Verfahrens:

χ2 =
∑ (

∆yi

σi

)2

=
∑ 1

σ2
i

(∆yi)2 (5.6)

Nach dieser Definition kann die Varianz σ2
i als Gewichtungsfaktor aufgefasst werden. Ist der Fehler

einer Stützstelle groß, ist auch die Varianz groß und damit hat dieser Wert ein geringeres Gewicht.

Da für ein Optimierungsproblem die Zahl der Variablen n im Vergleich zur Zahl der Stützstellen m

von zentraler Bedeutung ist, definiert man den Freiheitsgrad eines Problems:

ν = m− n (5.7)

Für ν = 0 ist das Problem eindeutig lösbar, es existiert meist eine analytische Lösung. Für ν > 0 ist
keine eindeutige Lösung angebbar, es muss eine Optimierung durchgeführt werden. Je höher der
Freiheitsgrad, um so genauer kann ein Problem gelöst werden. Die Zielfunktion χ2 hängt von der
Zahl der Freiheitsgrade ab. Werden Stützstellen zu einem lösbaren Problem hinzugefügt, so wird
sich χ2 erhöhen. Daher definiert man ein reduziertes χ2

χ2
ν =

χ2

ν
=

χ2

m− n
(5.8)

Bei einer guten Lösung sollte χ2
ν nahe Eins liegen, bei einer schlechten darüber.

Hat man eine Lösung eines NLS Problems erhalten, so interessieren die Güte des Fits, die Fehler
in den geschätzten Variablen sowie weitere statistische Größen. Eine Vielzahl dieser Aussagen kön-
nen aus der Kovarianzmatrix berechnet werden (siehe Abschnitt 4.2). Die Kovarianzmatrix C kann
wiederum aus der Hesseschen Matrix H der zweiten partiellen Ableitungen (Abschnitt 4.4) an der
Lösung berechnet werden:

C = σ2 ·H−1 (5.9)

Bei Optimierungsfunktionen, die keine Hessesche Matrix an der Lösung zurückliefern, kann diese
durch die Jacobi–Matrix angenähert werden (Abschnitt 4.5):

C ≈ σ2 ·
(
JT · J

)−1
= (σ2

jk) (5.10)

5.2 CNLS Verfahren

Zu Beginn der Analyse von Impedanzspektren wurde vereinzelt mit dem NLS Verfahren nur der
Realteil oder der Imaginärteil der Impedanz verwendet [refs???]. Es zeigte sich allerdings bald, dass
dieser Ansatz nur unzufriedenstellende Ergebnisse ermöglicht. Da die Impedanz eine komplexe
Größe ist, hat es sich als hilfreich erwiesen, sowohl Real- als auch Imaginärteil in die Optimierung
mit einzubeziehen [19].

Das NLS Verfahren minimiert die Zielfunktion (5.6) mit den Messwerten oder Stützstellen yi und
der Modellfunktion y(xi). Der CNLS Ansatz beruht auf der geeigneten Definition der Modellfunk-
tion unter Einbeziehung der komplexen Impedanz Z. Die Abweichung der gemessenen Impedanz
Z von der Modellimpedanz Ẑ kann über den Abstand

∣∣∣Z − Ẑ
∣∣∣ definiert werden (siehe Abschnitt B).
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Da die Impedanz stark von der Frequenz und anderen Größen wie z. B. der Temperatur abhängt,
kann nur ein zufriedenstellendes Ergebnis erzieht werden, wenn der Abstand gewichtet wird. In
[20] sind verschiedene Arten der Gewichtung diskutiert, es soll hier nur auf die relative Gewich-
tung (engl. modulus weighting) eingegangen werden. Die Modellfunktion oder auch Residuum
(engl. residual) fi(~x) berücksichtigt direkt den Abstand und die relative Gewichtung:

fi(~x) =

∣∣∣Zi − Ẑi

∣∣∣
|Zi|

=
1
wi
·
∣∣∣Zi − Ẑi

∣∣∣ (5.11)

Man kann nun das CNLS Problem mit der Zielfunktion F (~x) darstellen:

F (~x) =
1
2
·
∑
m

f2
i (~x) =

1
2
·
∑
m

1
w2

i

·
∣∣∣Zi − Ẑi

∣∣∣2 (5.12)

Idealerweise sollte der Gewichtungsfaktor wi von der Qualität der Stützstelle abhängen. Würde
man die Varianz σ2

i jeder Stützstelle kennen, so müsste wi = 1
σ2

i
verwendet werden. Gerade bei

niedrigen Frequenzen ist eine häufige Wiederholung der Messung für eine Statistik sehr umfang-
reich. Da die Gewichtungsfaktoren wi bei relativer Gewichtung aus den gemessenen Impedanzen
berechnet werden, muss man annehmen, dass die inversen Varianzen proportional zu den Beträgen
der Impedanzen sind [16, 21]. Man setzt also an:

wi =
1

|Zi|2
=

g

σ2
i

g = konst. (5.13)

Geht man nun davon aus, dass bei einem guten Fit χ2
ν ungefähr eins ist (siehe Abschnitt 5.1), so kann

die Konstante g berechnet werden, mit der die Varianzen der Messdaten sowie weitere Kenngrößen
korrigiert werden müssen. Vergleicht man die Definition (5.12) mit (5.6) so folgt durch Koeffizien-
tenvergleich:

g ≈ F (~x)
ν

und σ2
i ≈ 2 · g · |Zi|2 (5.14)

Die Kovarianzmatrix C kann wie in (5.10) über die Hessesche Matrix H aus der Jacobi–Matrix an
der Lösung berechnet werden. Dabei wird die Varianz σ des Problems durch die Konstante g be-
schrieben [15, 21, 32].

C ≈ g ·
(
JT · J

)−1
= (σ2

jk) (5.15)
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Anhang A

Geometrie zum RQ–Element

Teilweise aus [31, S. 17], teilweise selbst berechnet (Flächen, Achsenabschnitte).

Für analytische Betrachtungen der Impedanz eines RQ–Elements benötigt geometrische Daten in
der Ortskurvendarstellung. Ein unter die reelle Achse verschobener Halbkreis ist in Bild A.1 mit
den verwendeten Größen gezeigt. Um die Fläche des verschobenen Halbkreises analytisch aus den

w

y0

ωτ0=1

x0 x0 R0

θ

χr

R∞

Re

-Im

Bild A.1: Skizze zur Geometrie eines RQ–Elements in Ortskurvendarstellung

Daten eines RQ–Elements zu berechnen benötigt man den Winkel χ, den Radius r sowie x0 und y0.
Es gelten folgende Formeln nach [31, S. 17]:

θ =
π

2
− χ =

π

2
(1− n) χ =

π

2
· n

y0 = x0 · tan
χ

2
w = x0 · tan θ (A.1)

r = y0 + w =
x2

0 + y2
0

2 · y0

Die Fläche eines Kreissegments berechnet sich aus der Differenz des zugehörigen Kreissektors mit
dem Winkel 2χ und der doppelten Fläche des in Bild A.1 oberhalb der reelen Achse gelegenen
Dreiecks.

ARQ = ASektor −A∆ =
2χ

2π
· πr2 − 2 · 1

2
· x0 · w =

π

2
· n · r2 − x2

0 · tan
[π

2
(1− n)

]
(A.2)



31

Nun muss man aus den Daten eines RQ–Elements die Größen x0 und y0 berechnen. Nach Bild A.1
sind das die Koordinaten des Scheitelpunkts bei ωτ0 = 1. Berechnet man (3.3) für diese Stelle, so
folgt mit jn = cos nπ

2 + j · sin nπ
2 :

ZRQ(ω =
1
τ0

) =
R

1 + jn
=

R

(1 + cosnπ
2 ) + j · sinnπ

2

=
R(1 + cosnπ

2 − j · sinnπ
2 )

(1 + cosnπ
2 )2 + sin2 nπ

2

=
1
2 ·R(1 + cosnπ

2 − j · sinnπ
2 )

1 + cosnπ
2

=
R

2
− j ·

R
2 · sinnπ

2

1 + cos nπ
2

(A.3)

⇒ x0 =
R

2
y0 =

R
2 · sinnπ

2

1 + cos nπ
2

(A.4)

Für ein RC–Element gilt analog:

x0 =
R

2
y0 =

R

2
ARC =

π

2
· x2

0 (A.5)
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Anhang B

Komplexe Arithmetik

Der Betrag einer komplexen Zahl Z

|Z| = |re + j · im| =
√

re2 + im2 (B.1)

Abstand zweier komplexer Zahlen

|Z −W | = |(re1 + j · im1)− (re2 + j · im2)| (B.2)

= |(re1− re2) + j(im1− im2)| =
√

(re1− re2)2 + (im1− im2)2 (B.3)

Reelle Potenz einer komplexen Zahl Z

Zn = (re + j · im)n = |Z|n · ejnφ = |Z|n · [cos(n · φ) + j · sin(n · φ)] φ = arctan
(

im

re

)
(B.4)

für die reelle Potenz einer rein imaginären Zahl gilt:

(j · im)n = imn ·
[
cos(n · π

2
) + j · sin(n · π

2
)
]

(B.5)
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